Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có nhiều cách giải bài này. Hiện tôi có cách giải như sau tôi nghĩ là nó là ngắn nhất
Đặt: (2^2015)+1/(2^2012)+1 là A và (2^2017)+1/(2^2014)+1 là B
1/8A=(2^2015)+1/(2^2015)+8=(2^2015)+8-7/(2^2015)+8=1-7/(2^2015)+8
1/8B=(2^2017)+1/(2^2017)+8=(2^2017)+8-7/(2^2017)+8=1-7/(2^2017)+8
Vì 2^2015+8<2^2017+8 nên 7/(2^2015+8)>7/(2^2017)+8 nên 1-7/(2^2015)+8<1-7/(2^2017)+8 từ đó suy ra B>A hay 2^2017+1/(2^2014)+1>(2^2015)+1/(2^2012)+1
đặt \(A=\frac{2^{2015}+1}{2^{2012}+1}\); \(B=\frac{2^{2017}+1}{2^{2014}+1}\)
ta có :\(A=\frac{2^{2015}+1}{2^{2012}+1}\)
\(\frac{1}{2^3}A=\frac{2^{2015}+1}{2^{2015}+8}=\frac{2^{2015}+8-7}{2^{2015}+8}=1-\frac{7}{2^{2015}+8}\)
\(B=\frac{2^{2017}+1}{2^{2014}+1}\)
\(\frac{1}{2^3}B=\frac{2^{2017}+1}{2^{2017}+8}=\frac{2^{2017}+8-7}{2^{2017}+8}=1-\frac{7}{2^{2017}+8}\)
vì 22015 + 8 < 22017 + 8 nên \(\frac{7}{2^{2015}+8}>\frac{7}{2^{2015}+8}\)
\(\Rightarrow1-\frac{7}{2^{2015}+8}< 1-\frac{7}{2^{2017}+8}\)
hay \(\frac{1}{2^3}A< \frac{1}{2^3}B\)
\(\Rightarrow A< B\)
Giả sử A=\(\frac{2^{2015}+1}{2^{2012}+1}\)
-->\(\frac{1}{2^3}A=\frac{2^{2015}+1}{2^{2015}+8}\)
\(\frac{1}{8}A=\frac{2^{2015}+1}{2^{2015}+1}+\frac{2^{2015}+1}{7}\)
\(\frac{1}{8}A=1+\frac{2^{2015}+1}{7}\)
B=\(\frac{2^{2017}+1}{2^{2014}+1}\)
\(\frac{1}{2^3}B=\frac{2^{2017}+1}{2^{2017}+8}\)
\(\frac{1}{8}B=\frac{2^{2017}+1}{2^{2017}+1}+\frac{2^{2017}+1}{7}\)
\(\frac{1}{8}B=1+\frac{2^{2017}+1}{7}\)
Vì \(1+\frac{2^{2015}+1}{7}< 1+\frac{2^{2017}+1}{7}\)
nên \(\frac{1}{8}A< \frac{1}{8}B\)
-->A<B
-->\(\frac{2^{2015}+1}{2^{2012+1}}< \frac{2^{2017+1}}{2^{2014}+1}\)