Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\left|x\right|=2017\Rightarrow\hept{\begin{cases}x=-2017\\x=2017\end{cases}\Rightarrow}x=\pm2017\)
\(b)A=1+2^1+2^2+...+2^{2017}\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(2A-A=(2+2^2+2^3+...+2^{2018})-(1+2^2+2^3+...+2^{2017})\)
\(A=2^{2018}-1\)
...
Rồi còn khúc để bạn so sánh đó
A=2016/2017+2017/2018
Do 2016/2017<1,2017/2018<1=> A<2 Hay A<B
cái này là khi chiều mới thi nầy
Giải:
Ta có:A=1.2+2.3+3.4+...+2017.2018
3A=1.2.3 2.3.3+...+2017.2018.3
=1.2.(3-0)+2.3.(4-1)+...+2017.2018.(2019-2016)
=1.2.3+2.3.4+...+2017.2018.2019-1.2.0-2.3.1-...-2017.2018.1016
=2017.2018.2019-1.2.0
=2017.2018.2019
=>A=2017.2018.2019/3=2018.(2017.2019)/3
Và B=20183/3=2018.2018.2018/3=2018.(2018.2018)/3
Lại có: 2017.2019=2017.(2018+1)=2017.2018+2017
2018.2018=(2017+1).2018=2017.2018+2018
Mà 2017.2018+2017<2017.2018+2018 =>2017.2019<2018.2018
=>2018.(2017.2019)<2018.(2018.2018)
=>A=2018.(2017.2019)/3<2018.(2018.2018)/3=B
=>A<B
Vậy A<B
Chúc Công Chúa Bloom học giỏi!!!
\(2022A=2022+2022^2+2022^3+2022^4+...+2022^{2018}\)
\(2021A=2022A-A=2022^{2018}-1\Rightarrow A=\dfrac{2022^{2018}-1}{2021}\)
\(\Rightarrow A< B\)
a) 2^6 và 8^2;
8^2 = ( 2^4)^2 = 2^8
2^6 < 8^2
5^3 và 3^5 = 125 và 243 = 125 < 243
3^2 và 2^3 = 9 và 8 = 9 > 8
2^6 và 6^2
6^2 = (
A=1*2+2*3+3*4+...+2017*2018
3A=1*2*3+2*3*(4-1)+...+2017*2018*(2019-2016)
3A=1*2*3+2*3*4-1*2*3+...+2017*2018*2019-2016*2017*2018
3A=2017*2018*2019
A=\(\frac{2017.2018.2019}{3}\)
mk chỉ biết tính a thôi
Ta có: A= 1+2+2^2+2^3+...+2^2018
2A = 2+2^2+2^3+2^4+...+2^2019
2A-A=A= 2^2019-1 = (2^2017.4) -1
Mà B=5.2^2017
=> (2^2017.4) -1 < 5.2^2017
=> A < B
Lời giải:
a)
$A=3^1+3^2+3^3+...+3^{2016}$
$3A=3^2+3^3+3^4+...+3^{2017}$
Lấy sau trử trước theo vế:
$3A-A=3^{2017}-3$
$A=\frac{3^{2017}-3}{2}< 3^{2017}-3$
Vậy $A< B$
b)
$A=2017.2019=(2018-1)(2018+1)=2018^2+2018-2018-1=2018^2-1< 2018^2$
Vậy $A< B$
em cảm ơn cô nhiều ạ