K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2023

a) \(3\cdot24^{10}=3\cdot6^{10}\cdot4^{10}=3\cdot3^{10}\cdot2^{10}\cdot2^{20}\)

\(=3^{11}\cdot2^{30}\)

\(4^{30}=2^{30}\cdot2^{30}=2^{30}\cdot4^{15}\)

Ta có \(4^{15}>3^{15}>3^{11}\) nên \(4^{15}>3^{11}\)

Khi đó \(4^{15}\cdot2^{30}>3^{11}\cdot2^{30}\) hay \(4^{30}>3\cdot24^{10}\)

b) \(\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{19}{9^2\cdot10^2}\)

\(=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+...+\dfrac{19}{81\cdot100}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)

Vậy dãy trên nhỏ hơn 1

10 tháng 10 2023

a/

\(4^{30}=\left(2^2\right)^{30}=2^{60}=2^{30}.2^{30}=\left(2^2\right)^{15}.2^{30}=4^{15}.2^{30}\)

\(3.24^{10}=3.3^{10}.\left(2^3\right)^{10}=3^{11}.2^{30}< 3^{15}.2^{30}\)

\(\Rightarrow4^{30}=4^{15}.2^{30}>3^{15}.2^{30}>3^{11}.2^{30}=3.24^{10}\)

b/

\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}=\)

\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}=\)

\(=1-\dfrac{1}{10^2}< 1\)

 

15 tháng 8 2017

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(=\left(\dfrac{1}{1^2}-\dfrac{1}{2^2}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^2}-\dfrac{1}{4^2}\right)+...+\left(\dfrac{1}{9^2}-\dfrac{1}{100^2}\right)\)

\(=\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

\(=\dfrac{1}{1}-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

15 tháng 8 2017

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^2.10^2}\)

\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+...+\dfrac{19}{81.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)

1 tháng 6 2017

Ta có:

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

= \(\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}\)

= \(\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

= \(1-\dfrac{1}{10^2}\)

\(1-\dfrac{1}{10^2}< 1\) nên:

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\) < 1 (đpcm).

6 tháng 11 2017

\(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(A=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}\)

\(A=\dfrac{2^2}{1^2.2^2}-\dfrac{1^2}{1^2.2^2}+\dfrac{3^2}{2^2.3^2}-\dfrac{2^2}{2^2.3^2}+...+\dfrac{10^2}{9^2.10^2}-\dfrac{9^2}{9^2.10^2}\)\(A=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

\(A=1-\dfrac{1}{10^2}< 1\left(đpcm\right)\)

6 tháng 11 2017

A=312.22+522.32+732.42+...+1992.102

A=\(\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+....+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

A = \(\dfrac{1}{1^2}-\dfrac{1}{10^2}\)

A = \(1-\dfrac{1}{10^2}\) < 1

Vậy A < 1

17 tháng 11 2018

a/ \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)

\(\Leftrightarrow\left(\dfrac{x+1}{100}+1\right)+\left(\dfrac{x+2}{99}+1\right)=\left(\dfrac{x+3}{98}+1\right)+\left(\dfrac{x+4}{97}+1\right)\)

\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}=\dfrac{x+101}{98}+\dfrac{x+101}{97}\)

\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}-\dfrac{x+101}{98}-\dfrac{x+101}{97}=0\)

\(\Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\)

\(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\ne0\)

\(\Leftrightarrow x+101=0\)

\(\Leftrightarrow x=-101\)

Vậy...

b/ Đặt :

\(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+.........+\dfrac{19}{9^2.10^2}\)

\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+....+\dfrac{10^2-9^2}{9^2.10^2}\)

\(=\dfrac{2^2}{1^2.2^2}-\dfrac{1^2}{1^2.2^2}+\dfrac{3^2}{2^2.3^2}-\dfrac{2^2}{2^2.3^2}+....+\dfrac{10^2}{9^2.10^2}-\dfrac{9^2}{9^2.10^2}\)

\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

\(=1-\dfrac{1}{10^2}< 1\)

\(\Leftrightarrow A< 1\left(đpcm\right)\)

Vậy...

c/ Với mọi x ta có :

\(\left|x-5\right|=\left|5-x\right|\)

\(\Leftrightarrow\left|x-10\right|+\left|x-5\right|=\left|x-10\right|+\left|5-x\right|\)

\(\Leftrightarrow A=\left|x-10\right|+\left|5-x\right|\)

\(\Leftrightarrow A\ge\left|x-10+5-x\right|\)

\(\Leftrightarrow A\ge5\)

Dấu "=" xảy ra

\(\Leftrightarrow\left(x-10\right)\left(5-x\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-10\ge0\\5-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-10\le0\\5-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge10\\5\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le10\\5\le x\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\5\le x\le10\end{matrix}\right.\)

Vậy..

17 tháng 10 2021

đcmcm

 

29 tháng 10 2017

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2+10^2}\)

\(=\left(\dfrac{1}{1^2}-\dfrac{1}{2^2}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{3^2}\right)+...+\left(\dfrac{1}{9^2}-\dfrac{1}{10^2}\right)\)

=\(\dfrac{1}{1}-\dfrac{1}{10^2}\)

\(=1-\dfrac{1}{100}\)

\(1-\dfrac{1}{100}< 1\)

\(\Rightarrow\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^2.10^2}< 1\) (đpcm)

2 tháng 8 2017

\(D=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(D=\left(\dfrac{1}{1^2}-\dfrac{1}{2^2}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{4^2}\right)+...+\left(\dfrac{1}{9^2}-\dfrac{1}{10^2}\right)\)

\(D=\dfrac{1}{1}-\dfrac{1}{10^2}\)

\(D=1-\dfrac{1}{100}< 1\)

Vậy \(D< 1\left(đpcm\right)\)

16 tháng 10 2018

b) \(\dfrac{7}{15}-\dfrac{9}{19}\)\(-\dfrac{-8}{15}-\dfrac{10}{19}\)
=\(\left(\dfrac{7}{15}-\dfrac{8}{15}\right)\) \(-\left(\dfrac{9}{19}-\dfrac{10}{19}\right)\)
= \(-\dfrac{1}{15}\) - \(\left(-\dfrac{1}{19}\right)\)
\(=-\dfrac{1}{15}\) + \(\dfrac{1}{19}\)

= \(-\dfrac{4}{285}\)

16 tháng 10 2018

c) \(1\dfrac{1}{3}\) \(\div\) \(\dfrac{4}{5}\) + 2\(\dfrac{2}{3}\) \(\div\)\(\dfrac{4}{5}\)
= \(\left(1\dfrac{1}{3}+2\dfrac{2}{3}\right)\) \(\div\dfrac{4}{5}\)
= \(\left[\left(1+2\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\right]\) \(\div\dfrac{4}{5}\)
= ( 3 + 1 ) \(\div\dfrac{4}{5}\)
= 4 \(\div\dfrac{4}{5}\)
= \(\dfrac{4.5}{4}\)
= 5

20 tháng 12 2017

1)\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2008+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)}\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2009}{2009}+\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2007}+\dfrac{2009}{2008}}\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}\)

\(\dfrac{A}{B}=\dfrac{1}{2009}\)

2) \(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(A=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}\)

\(A=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

\(A=1-\dfrac{1}{10^2}< 1\left(đpcm\right)\)

13 tháng 3 2017

Ta có:

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2+10^2}\)

\(=\left(\dfrac{1}{1^2}-\dfrac{1}{2^2}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{3^2}\right)+...+\left(\dfrac{1}{9^2}-\dfrac{1}{10^2}\right)\)

\(=\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

\(=\dfrac{1}{1^2}-\dfrac{1}{10^2}\)

\(=1-\dfrac{1}{100}\)

\(1-\dfrac{1}{100}< 1\)

Nên \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2+10^2}< 1\) (Đpcm)

13 tháng 3 2017

\(vt:\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^2+10^2}\)

=\(\dfrac{1}{1}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+..+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

=\(\dfrac{1}{1}-\dfrac{1}{10^2}\)

=>A<1