\(U=\frac{1.3.5.7...39}{21.22.23...40}\) và V=\(\frac{1}{2^{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Ta có : \(U=\frac{1.3...39}{21.22...40}\)

=> \(U=\frac{1.3...39.\left(2.4...40\right)}{21.22...40.\left(2.4.6...40\right)}\)

=> \(U=\frac{1.2.3...39.40}{21.22...40.\left(1.2...20\right).2^{20}}\)

=> \(U=\frac{1}{2^{20}}\)

- Ta thấy : \(2^{20}>2^{20}-1\)

=> \(\frac{1}{2^{20}}< \frac{1}{2^{20}-1}\)

hay \(U< V\)

Vậy U < V .

26 tháng 2 2020

\(^{2^{20}>2^{20}-1}\) chứ

15 tháng 3 2016

\(\frac{1.3.5.7...39}{21.22.23...40}=\frac{\left(2.4.6.8...40\right).\left(1.3.5.7...39\right)}{\left(2.4.6.8...40\right).\left(21.22.23...40\right)}=\frac{1.2.3.4...40}{^{2^{20}.1.2.3.4...40}}=\frac{1}{2^{20}}\)

15 tháng 3 2016

\(\frac{1.3.5.7....39}{21.22.23....40}=\frac{\left(2.4.6....40\right).\left(1.3.5.7....39\right)}{\left(2.4.6....40\right).\left(21.22.23...40\right)}=\frac{1.2.3.4....40}{2^{20}.1.2.3.4....40}=\frac{1}{2^{20}}\)

30 tháng 7 2018

CM: \(\dfrac{1\cdot3\cdot5\cdot7\cdot\cdot\cdot39}{21\cdot22\cdot23\cdot\cdot\cdot40}=\dfrac{1}{2^{20}}\)

Biến đổi vế trái:

\(\dfrac{1\cdot3\cdot5\cdot7\cdot\cdot\cdot39}{21\cdot22\cdot23\cdot\cdot\cdot40}=\dfrac{1\cdot3\cdot5\cdot7\cdot\cdot\cdot19}{22\cdot24\cdot26\cdot\cdot\cdot40}\)

\(=\dfrac{1\cdot3\cdot5\cdot7\cdot\cdot\cdot19}{2\cdot11\cdot2^3\cdot3\cdot2\cdot13\cdot2^2\cdot7\cdot2\cdot15\cdot2^5\cdot2\cdot17\cdot2^2\cdot9\cdot2\cdot19\cdot2^3\cdot5}\)

\(=\dfrac{1\cdot3\cdot5\cdot7\cdot\cdot\cdot19}{\left(3\cdot5\cdot7\cdot\cdot\cdot19\right)2^{20}}\)

\(=\dfrac{1}{2^{20}}\)

17 tháng 3 2020

Bài 1:

a, \(\frac{1}{-16}-\frac{3}{45}=\frac{-1}{16}-\frac{1}{15}\)

\(=\frac{-15}{240}-\frac{16}{240}\)

\(=\frac{-31}{240}\)

b, \(=\frac{-10}{12}-\frac{-12}{12}\)

\(=\frac{2}{12}=\frac{1}{6}\)

c, \(=\frac{-30}{6}-\frac{1}{6}\)

\(=\frac{-31}{6}\)

Bài 2:

a, \(x=-\frac{1}{2}-\frac{3}{4}\)

\(x=-\frac{1}{4}\)

b,   \(\frac{1}{2}+x=-\frac{11}{2}\)

\(x=-\frac{11}{2}-\frac{1}{2}\)

\(x=-6\)

Bạn nhớ k đúng và chọn câu trả lời này nhé!!!! Mình giải đúng và chính xác hết ^_^

20 tháng 4 2019

a/a+1 + a+1/a=a2+(a+1)2/a.(a+1)=a2/a2+(a+1)2/a=1+a2+(2a+1)/a=1+a+(2a+1)/a.

Do a thuộc N* nên a>=1.Nên 1+a+(2a+1)/a>2

Vậy a/a+1 + a+1/a>2

20 tháng 4 2019

\(\frac{a}{a+1}+\frac{a+1}{a}=\frac{a^2+\left(a+1\right)^2}{a\left(a+1\right)}\)

                                   \(=\frac{2a^2+2a+1}{a\left(a+1\right)}\)

                                     \(=\frac{2a^2+2a}{a\left(a+1\right)}+\frac{1}{a\left(a+1\right)}\)

                                     \(=\frac{2a\left(a+1\right)}{a\left(a+1\right)}+\frac{1}{a\left(a+1\right)}\)

                                        \(=2+\frac{1}{a\left(a+1\right)}\)

Vì \(a\varepsilonℕ^∗\)nên \(2+\frac{1}{a\left(a+1\right)}>2\)

Vậy \(\frac{a}{a+1}+\frac{a+1}{a}>2\)