Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có
\(\sqrt{35}< \sqrt{36}=6\)
\(\sqrt{99}< \sqrt{100}=10\)
\(\Rightarrow\sqrt{35}+\sqrt{99}< 10+6=16\)
b) Ta có
\(\sqrt{50}>\sqrt{49}=7\)
\(\sqrt{17}>\sqrt{16}=4\)
\(\Rightarrow\sqrt{50}+\sqrt{17}>7+4=11\)
bạn cũng có thể ấn vào Câu hỏi của CON CHÓ 4 ĐẦU - Toán lớp 7 | Học trực tuyến
\(\sqrt{24}+\sqrt{35}+\sqrt{99}<\sqrt{25}+\sqrt{36}+\sqrt{100}=5+6+10=21\)
Ta có : \(\sqrt{61-35}=\sqrt{26}>\sqrt{25}=5\)(1)
\(\sqrt{61}-\sqrt{35}< \sqrt{64}-\sqrt{36}=8-6=2\)(2)
Từ (1) và (2) ta được : \(\sqrt{61-35}>5>2>\sqrt{61}-\sqrt{35}\)
\(\Rightarrow\sqrt{61-35}>\sqrt{61}-\sqrt{35}\)
ta có ; \(\sqrt{35}=\sqrt{10}+\sqrt{15}+\)\(\sqrt{5}\)
mà : \(\sqrt{5}< \sqrt{10};\sqrt{10}< \sqrt{25};1< \sqrt{5}\)
\(\Rightarrow\sqrt{35}>\sqrt{5}+\sqrt{10}+1\)
b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)
Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)
Từ biểu thức (1) và biểu thức (2)
=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
Ta có: \(\left\{{}\begin{matrix}0< 24< 25\\0< 35< 36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{24}< \sqrt{25}\\\sqrt{35}< \sqrt{36}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{24}< 5\\\sqrt{35}< 6\end{matrix}\right.\)
\(\Rightarrow\sqrt{24}+\sqrt{35}\) < 5 + 6
\(\Leftrightarrow\) \(\sqrt{24}+\sqrt{35}\) < 11
Vậy \(\sqrt{24}+\sqrt{35}\) < 11