\(\sqrt{0,1\sqrt{0,01}}\) và \(\sqrt{0,00011}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\sqrt{0.1}\cdot\sqrt{4000}\)

\(=\sqrt{\frac{1}{10}}\cdot\sqrt{4000}\)

\(=\sqrt{\frac{1}{10}\cdot4000}=\sqrt{400}=20\)

b) Ta có: \(\sqrt{\frac{9}{196}}=\sqrt{\left(\frac{3}{14}\right)^2}\)

\(=\left|\frac{3}{14}\right|\)

\(=\frac{3}{14}\)(Vì \(\frac{3}{14}>0\))

c) Ta có: \(\sqrt{16}\cdot\sqrt{36}-\sqrt{125}:\sqrt{0.01}\)

\(=\sqrt{16\cdot36}-\frac{\sqrt{125}}{\sqrt{\frac{1}{100}}}\)

\(=\sqrt{576}-\sqrt{125:\frac{1}{100}}\)

\(=24-\sqrt{125\cdot100}\)

\(=24-\sqrt{12500}\)

\(=24-50\sqrt{5}\)

d) Ta có: \(\left(\sqrt{112}-\sqrt{63}+\sqrt{7}\right):\sqrt{7}\)

\(=\left(4\sqrt{7}-3\sqrt{3}+\sqrt{7}\right):\sqrt{7}\)

\(=\frac{2\sqrt{7}}{\sqrt{7}}=2\)

e) Ta có: \(\sqrt{2.5}\cdot\sqrt{30}\cdot\sqrt{48}\)

\(=\sqrt{\frac{5}{2}\cdot30\cdot48}=\sqrt{3600}=60\)

11 tháng 7 2016

a) Ta có : \(\left(\sqrt{11}+\sqrt{13}\right)^2=11+2\sqrt{11.13}+13=24+2\sqrt{143}\)

\(\left(2.\sqrt{12}\right)^2=4.12=24+2.\sqrt{144}\)

mà \(\sqrt{144}>\sqrt{143}\Rightarrow24+2\sqrt{144}>24+2\sqrt{143}\Rightarrow\left(2.\sqrt{12}\right)^2>\left(\sqrt{11}+\sqrt{13}\right)^2\)

\(2.\sqrt{12}>\sqrt{11}+\sqrt{13}\)

11 tháng 7 2016

b) Ta có : \(\left(\sqrt{69}-\sqrt{68}\right)-\left(\sqrt{68}-\sqrt{69}\right)\)

        \(\Leftrightarrow\sqrt{69}+\sqrt{67}-2\sqrt{68}\)

Từ kq câu a \(\Rightarrow\sqrt{69}+\sqrt{67}< 2\sqrt{68}\)

\(\Rightarrow\sqrt{69}+\sqrt{67}-2\sqrt{68}< 0\)

\(\Rightarrow\left(\sqrt{69}-\sqrt{68}\right)-\left(\sqrt{68}-\sqrt{67}\right)< 0\)

\(\Rightarrow\sqrt{69}-\sqrt{68}< \sqrt{68}-\sqrt{67}\)

26 tháng 8 2018

bài 1 đúng\(\sqrt{\dfrac{49}{9}}=\dfrac{7}{3}\)

bài 2 dùng máy tính bỏ túi hoặc

a) giả sử: \(6< \sqrt{37}\)

\(\Leftrightarrow\) 62 < (\(\sqrt{37}\))2

\(\Leftrightarrow\) 36 < 37(luôn đúng)

Vậy 6 < \(\sqrt{37}\)

b), c) tương tự

26 tháng 8 2018

bài 3

a) đúng

b) sai

bài yêu cầu Cm không dúng máy tính thì làm như bài 2

16 tháng 6 2017

a)    \(\sqrt{7}-\sqrt{5}< \sqrt{5}-\sqrt{3}\)

b)     \(\sqrt{15}-\sqrt{14}< \sqrt{14}-\sqrt{13}\)

27 tháng 9 2017

cả hai bài đều giải bằng cách  bình phương cả hai vế rồi so sánh

27 tháng 9 2017

So sánh từng vế:

\(\sqrt{15}+1=4,872983346\)

\(\sqrt{24}=4,898979486\)

Vậy: \(\sqrt{15}+1< \sqrt{24}\)

\(\sqrt{2002}+\sqrt{2004}=89,50977321\)

\(2\sqrt{2005}=89,5545271\)

Vậy \(\sqrt{2002}+\sqrt{2004}< 2\sqrt{2005}\)

P/s: Ko chắc

31 tháng 7 2018

a)\(\sqrt{8}+3< \sqrt{9}+3=3+3=6< 6+\sqrt{2}\)

b)\(14=\sqrt{196}>\sqrt{195}=\sqrt{13.15}=\sqrt{13}.\sqrt{15}\)

c) Ta có: \(\hept{\begin{cases}\sqrt{27}>\sqrt{25}=5\\\sqrt{6}>\sqrt{4}=2\end{cases}\Rightarrow\sqrt{27}+\sqrt{6}+1>5+2+1=8}\)

Mà \(\sqrt{48}< \sqrt{49}=7< 8\)

\(\Rightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)

Tham khảo nhé~

6 tháng 7 2018

Tính ra rồi so sánh

6 tháng 7 2018

a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)

ta có \(\sqrt{5}>\sqrt{3}\)\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)

30 tháng 8 2020

\(a\)

\(\sqrt{7}+\sqrt{15}\) 

\(=\sqrt{7+15}\)

\(=4,69\)

\(4,69< 7\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

\(b\)

\(\sqrt{7}+\sqrt{15}+1\)

\(=\sqrt{7+15}+1\)

\(=4,69+1\)

\(=5,69\)

\(\sqrt{45}\)

\(=6,7\)

\(5,69< 6,7\)

\(\Rightarrow\)\(\sqrt{7}+\sqrt{15}+1\)\(< \)\(\sqrt{45}\)

\(c\)

\(\frac{23-2\sqrt{19}}{3}\)

\(=\frac{22.4,53}{3}\)

\(=\frac{95,7}{3}\)

\(=31,9\)

\(\sqrt{27}\)

\(=5,19\)

\(31,9>5,19\)

\(\text{​​}\Rightarrow\text{​​}\text{​​}\)\(\frac{23-2\sqrt{19}}{3}\)\(>\sqrt{27}\)

\(d\)

\(\sqrt{3\sqrt{2}}\)

\(=\sqrt{3.1,41}\)

\(=\sqrt{4,23}\)

\(=2,05\)

\(\sqrt{2\sqrt{3}}\)

\(=\sqrt{2.1,73}\)

\(=\sqrt{3,46}\)

\(=1,86\)

\(2,05>1,86\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

\(Học \) \(Tốt !!!\)

30 tháng 8 2020

a) Ta có : \(\sqrt{7}< \sqrt{9}=3;\sqrt{15}< \sqrt{16}=4\)

Do đó : \(\sqrt{7}+\sqrt{15}< 3+4=7\)

b) Ta có : \(\sqrt{17}>\sqrt{16}=4;\sqrt{5}>\sqrt{4}=2\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>4+2+1=7\)

Lại có : \(\sqrt{45}< \sqrt{49}< 7\)

Do đó : \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

c) Ta thấy : \(\sqrt{19}>\sqrt{16}=4\)

\(\Rightarrow2\sqrt{19}>2.4=8\)

\(\Rightarrow-2\sqrt{19}< -8\)

\(\Rightarrow23-2\sqrt{19}< 23-8=15\)

\(\Rightarrow\frac{23-2\sqrt{19}}{3}< 5\). Mặt khác : \(\sqrt{27}>\sqrt{25}=5\)

Nên : \(\frac{23-2\sqrt{19}}{3}< \sqrt{27}\)

d) Vì : \(18>12>0\Rightarrow\sqrt{18}>\sqrt{12}>0\)

\(\Leftrightarrow3\sqrt{2}>2\sqrt{3}>0\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

6 tháng 1 2017

căn 2017 - căn 2016   <     căn 2016 - căn 2014