Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\dfrac{1}{7}B=\dfrac{1}{10.18}+\dfrac{1}{18.26}+\dfrac{1}{26.34}+...+\dfrac{1}{802.810}\)
\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{8}{10.18}+\dfrac{8}{18.26}+\dfrac{8}{26.34}+...+\dfrac{8}{802.810}\right)\)
\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{1}{10}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{34}+...+\dfrac{1}{802}-\dfrac{1}{810}\right)\)
\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{1}{10}-\dfrac{1}{810}\right)\)
\(\dfrac{1}{7}B=\dfrac{1}{8}.\dfrac{8}{81}\)
\(\dfrac{1}{7}B=\dfrac{1.8}{8.81}\)
\(\dfrac{1}{7}B=\dfrac{1}{81}\)
\(B=\dfrac{1}{81}:\dfrac{1}{7}\)
\(B=\dfrac{7}{81}\)
Ta có:
\(A=\dfrac{2010}{2011}+\dfrac{2011}{2012}\)
\(B=\dfrac{2010+2011}{2011+2012}\)
\(=\dfrac{2010}{2011+2012}+\dfrac{2011}{2011+2012}\)
Áp dụng tính chất \(\dfrac{a}{b}>\dfrac{a}{b+m}\) ta có:
\(\left\{{}\begin{matrix}\dfrac{2010}{2011}>\dfrac{2010}{2011+2012}\\\dfrac{2011}{2012}>\dfrac{2011}{2011+2012}\end{matrix}\right.\)
\(\Rightarrow\dfrac{2010}{2011}+\dfrac{2011}{2012}>\dfrac{2010}{2011+2012}+\dfrac{2011}{2011+2012}\)
Hay \(\dfrac{2010}{2011}+\dfrac{2011}{2012}>\dfrac{2010+2011}{2011+2012}\)
Vậy \(A>B\)
\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)Ta thấy:
\(\dfrac{2010}{2011}>\dfrac{2010}{2011+2012+2013}\\ \dfrac{2011}{2012}>\dfrac{2011}{2011+2012+2013}\\ \dfrac{2012}{2013}>\dfrac{2012}{2011+2012+2013}\\ \Rightarrow\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\\ \Leftrightarrow P>Q\)
Vậy \(P>Q\)