\(\dfrac{1}{1+\dfrac{2010}{2011}+\dfrac{2010}{2012}}+\dfrac{1}{1+\dfrac{2011}{2010}+\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

b)\(\dfrac{1}{7}B=\dfrac{1}{10.18}+\dfrac{1}{18.26}+\dfrac{1}{26.34}+...+\dfrac{1}{802.810}\)

\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{8}{10.18}+\dfrac{8}{18.26}+\dfrac{8}{26.34}+...+\dfrac{8}{802.810}\right)\)

\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{1}{10}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{34}+...+\dfrac{1}{802}-\dfrac{1}{810}\right)\)

\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{1}{10}-\dfrac{1}{810}\right)\)

\(\dfrac{1}{7}B=\dfrac{1}{8}.\dfrac{8}{81}\)

\(\dfrac{1}{7}B=\dfrac{1.8}{8.81}\)

\(\dfrac{1}{7}B=\dfrac{1}{81}\)

\(B=\dfrac{1}{81}:\dfrac{1}{7}\)

\(B=\dfrac{7}{81}\)

23 tháng 3 2017

ê cu bn chơi ngọc rồng à có ac bang bang ko mk mượn

2 tháng 4 2017

Ta có:

\(A=\dfrac{2010}{2011}+\dfrac{2011}{2012}\)

\(B=\dfrac{2010+2011}{2011+2012}\)

\(=\dfrac{2010}{2011+2012}+\dfrac{2011}{2011+2012}\)

Áp dụng tính chất \(\dfrac{a}{b}>\dfrac{a}{b+m}\) ta có:

\(\left\{{}\begin{matrix}\dfrac{2010}{2011}>\dfrac{2010}{2011+2012}\\\dfrac{2011}{2012}>\dfrac{2011}{2011+2012}\end{matrix}\right.\)

\(\Rightarrow\dfrac{2010}{2011}+\dfrac{2011}{2012}>\dfrac{2010}{2011+2012}+\dfrac{2011}{2011+2012}\)

Hay \(\dfrac{2010}{2011}+\dfrac{2011}{2012}>\dfrac{2010+2011}{2011+2012}\)

Vậy \(A>B\)

10 tháng 5 2017

\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)Ta thấy:

\(\dfrac{2010}{2011}>\dfrac{2010}{2011+2012+2013}\\ \dfrac{2011}{2012}>\dfrac{2011}{2011+2012+2013}\\ \dfrac{2012}{2013}>\dfrac{2012}{2011+2012+2013}\\ \Rightarrow\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\\ \Leftrightarrow P>Q\)

Vậy \(P>Q\)