K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2016

Khi a,b cùng dấu thì:

\(\frac{a}{b}\)hoặc \(-\frac{a}{-b}\)\(>0\)

Khi a,b khác dấu:

a dương b âm

\(\frac{a}{-b}< 0\)

a âm b dương

\(-\frac{a}{b}< 0\)

tíc mình nha

10 tháng 4 2018

=> \(\frac{ay+bx}{xy}=\frac{bz+cy}{yz}=\frac{cx+az}{zc}\) <=> \(\frac{a}{x}+\frac{b}{y}=\frac{b}{y}+\frac{c}{z}=\frac{c}{z}+\frac{a}{c}\) 

<=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=k\)=> \(x=ak\) ; \(y=bk\) ; \(z=ck\) (2)

Gọi giả thiết là (1)  Thay 2 vào 1 ta đc : \(k=\frac{1}{2}\)

=> Kết hợp k=1/2 với 2 ta được: a=x/2 ; b=y/2 và c=z/2

2 tháng 8 2018

bạn lầu trên ơi, a/x=b/y=c/x=k thì x=a/k chứ bạn đâu phải x=ak đâu.

6 tháng 4 2020

CR:

8-4=4(cm)

TT:

8x4x8=256(cm3)

Đ/S:256cm3

6 tháng 4 2020

Ta có: a-1/a = a/a - 1/a = 1 - 1/a < 1

           b+1/b = b/b + 1/b = 1 + 1/b > 1

      => a-1/a < 1 < b+1/b

   Vậỵ a-1/a < b+1/b

19 tháng 8 2016

1. Với a, b ∈ Z, b> 0

- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0

- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0

Tổng quát: Số hữu tỉ  \(\frac{a}{b}\) (a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0

2. Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y

                                                  

19 tháng 8 2016

ah ! xin lỗi ha, toán lớp 7 đoá !hihi

Bài 3: 

Trường hợp 1: a<b<0

=>|a|>|b|

Trường hợp 2: b>a>0

=>|a|<|b|

10 tháng 6 2018

Xét hiệu:

\(\frac{a}{b}-\frac{a+2007}{b+2007}=\frac{a.\left(b+2007\right)-b.\left(a+2007\right)}{b.\left(b+2007\right)}=\frac{ab+2007a-ab+2007b}{b.\left(b+2007\right)}=\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}\)

Xét 3 trường hợp:

TH1: a=b\(\Rightarrow\)a-b=0\(\Rightarrow\)\(\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}=\frac{2007.0}{b.\left(b+2007\right)}=0\)\(\Rightarrow\frac{a}{b}=\frac{a+2007}{b+2007}\)

TH2:  a<b\(\Rightarrow\)a-b<0\(\Rightarrow\)\(2007.\left(a-b\right)< 0\Rightarrow\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}< 0\)\(\Rightarrow\frac{a}{b}< \frac{a+2007}{b+2007}\)

TH3: a>b\(\Rightarrow\)a-b>0\(\Rightarrow\)\(2007.\left(a-b\right)>0\Rightarrow\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}>0\)\(\Rightarrow\frac{a}{b}>\frac{a+2007}{b+2007}\)

Vậy với a=b thì  \(\frac{a}{b}=\frac{a+2007}{b+2007}\)

            a<b thì \(\frac{a}{b}< \frac{a+2007}{b+2007}\)

           a>b thì  \(\frac{a}{b}>\frac{a+2007}{b+2007}\)

10 tháng 6 2018

mấy bạn giúp mình với >.<

17 tháng 6 2021

Ta có: \(\frac{a-1}{a}=1-\frac{1}{a};\frac{b+1}{b}=1+\frac{1}{b}\)

\(a;b>0\Rightarrow\frac{1}{a};\frac{1}{b}>0\Rightarrow1-\frac{1}{a}< 1+\frac{1}{b}hay\frac{a-1}{a}< \frac{b+1}{b}\)

\(a;b< 0\Rightarrow\frac{1}{a};\frac{1}{b}< 0\Rightarrow1-\frac{1}{a}>1+\frac{1}{b}hay\frac{a-1}{a}>\frac{b+1}{b}\)