K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

S = \(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{40}\) (có 40-21+1=20 số hạng)

Ta có : \(\dfrac{1}{20}>\dfrac{1}{21}>\dfrac{1}{22}>...>\dfrac{1}{40}\)(vì 1>0 ; 0<20<21<22<...<40)

=> \(\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}>\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{40}\) (mỗi vế có 20 số hạng )

=> \(\dfrac{1}{20}.20>S\)

=> 1 > S

=> S < 1

Vậy S < 1

23 tháng 4 2017

ta có 1/3=10/30

1/21+1/22+...+1/30 có 10 p/số

mà 1/21>1/30

1/22>1/30

....

1/29>1/30

1/30=1/30

=>1/21+..1/30>1/30+....1/30 có 10 phân số 

=>1/21+...1/30>1/3

23 tháng 4 2017

Ta có: \(\frac{1}{21}< \frac{1}{30}\)

\(\frac{1}{22}< \frac{1}{30}\)

......

\(\frac{1}{29}< \frac{1}{30}\)

\(\Rightarrow S< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)(có 10 p/s)
\(\Rightarrow S< \frac{1}{30}.10=\frac{10}{30}=\frac{1}{3}\)

Vậy S < 1/3

6 tháng 3 2018

S = 1/21 + 1/22 + ... + 1/30 

Số lượng số của S là : 

( 30 - 21 ) : 1 + 1 = 10 ( số ) 
Ta có : 1/21 > 1/30 , 1/22 > 1/30 , ... 1/29 > 1/30 , 1/30 = 1/30

=> 1/21 + 1/22 + ...+ 1/30 ( 10 số ) > 1/30 + 1/30 + ...+ 1/30 ( 10 số ) 

=>         S > 1/30 . 10

=>         S > 1/3

Chúc bạn học giỏi !!!! 

6 tháng 3 2018

Ta có :

1/21 > 1/30

1/22 > 1/30

.........

1/29 > 1/30

=> S > 1/30 + 1/30 + ...... + 1/30 ( có 10 phân số 1/30 )

        = 10/30 = 1/3

=>S > 1/3

Tk mk nha

30 tháng 4 2017

Ta có S = ( 1/2 - 1) : ( 1/3 - 1) : (1/4 - 1) :... : ( 1/50 - 1)

S = -1/2 : ( -2/3) : ( -3/4) : ... : ( -49/ 50)

S= -1/2 x (-3/2) x ( -4/3) x ... x (-50/49)

S=  -1/2 x 1/3 x 50

S= -25/3

30 tháng 4 2017

cho mình thêm câu trả lời đi

27 tháng 11 2018

Ta có : 1/21 > 1/30 ; 1/22 > 1/30 ;...; 1/29 > 1/30

=> 1/21 + 1/22 + .. + 1/29 > 1/30 + 1/30 +... + 1/30 (10 số 1/30) = 10/30 = 1/3 (**)

Lại có : 1/31 > 1/40 ; 1/32 > 1/40 ; ...; 1/39 > 1/40 

=> 1/31 + 1/32 +... + 1/39 > 1/4 (**)

 Đặt A =1/21 +1/22 +1/23 +... + 1/29 +1/31 + ... +1/39

Từ (*) và (**) => A > 1/3 + 1/4 => A > 7/12 (hay A>K)

Mà A<H => H>K

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

2 tháng 3 2019

 a ,  \(A=\frac{19^{30}+1}{19^{31}+1}\Rightarrow19A=\frac{19^{31}+19}{19^{31}+1}=\frac{19^{31}+1+18}{19^{31}+1}=1+\frac{18}{19^{31}+1}\)

     \(B=\frac{19^{31}+1}{19^{32}+1}\Rightarrow19B=\frac{19^{32}+19}{19^{32}+1}=\frac{19^{32}+1+18}{19^{32}+1}=1+\frac{18}{19^{32}+1}\)

Vì \(19A< 19B\Leftrightarrow A< B\)

b, câu b tương tự nha

2 tháng 3 2019

sửa lại chút nha :

do : \(\frac{18}{19^{31}+1}>\frac{18}{19^{32}+1}\Rightarrow1+\frac{18}{19^{31}+1}>1+\frac{18}{19^{32}+1}\)

\(\Rightarrow19A< 19B\Leftrightarrow A< B\)

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(2S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)+\left(1+\frac{1}{2}+...+\frac{1}{2^{10}}\right)\)

\(2S-S=S=2-\frac{1}{2^{10}}\)

18 tháng 8 2020

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(2S=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(2S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)

\(S=2S-S\)

\(S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)

\(S=2-\frac{1}{2^{10}}\)