K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

a) \(\sqrt{3x-4}\) + \(\sqrt{4x+1}\) = \(-16x^2 - 8x +1\) với

ĐKXĐ :

- Vế trái \(x \ge \frac{4}{3}\)

- Vế phải : \(-16x^2 - 8x +1\) \(\ge 0\) \(\Leftrightarrow \) \(x \le \frac{\sqrt{2}-1}{4}\) hoặc \(x \le \frac{-\sqrt{2}-1}{4}\)

Hai điều kiện trái ngược nhau

Vậy phương trình vô nghiệm .

25 tháng 11 2017

Ặc sai rồi .... hiha Thông cảm

a) Ta có :\(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2}\cdot\sqrt{3}=5+2\sqrt{6}>5=\left(\sqrt{5}\right)^2\)

\(\Rightarrow\left(\sqrt{2}+\sqrt{3}\right)^2>\left(\sqrt{5}\right)^2\Leftrightarrow\sqrt{2}+\sqrt{3}>\sqrt{5}\)

30 tháng 6 2019

a) \(\sqrt{2}+\sqrt{3}>\sqrt{5}\)

b) \(\sqrt{2003}+\sqrt{2005}< 2.\sqrt{2004}\)

HOK TOT

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0
28 tháng 6 2017

\(\sqrt{2003}\)\(+\)\(\sqrt{2004}\)\(>\)\(2\)\(\sqrt{2004}\)

k mik nhaavt111329_60by60.jpg

28 tháng 6 2017

Đặt \(A^2=\left(\sqrt{2003}+\sqrt{2004}\right)^2>0\)

\(\le\left(1+1\right)\left(2003+2004\right)=2\cdot4007=8014\)

\(\Rightarrow A^2\le8014\). Và 

\(B^2=\left(2\sqrt{2004}\right)^2=4\cdot2004=8016\)

Suy ra \(A^2\le8014< 8016=B^2\Leftrightarrow A< B\)

Bài 1:

b) Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(=\frac{\sqrt{2\left(4+\sqrt{7}\right)}}{\sqrt{2}}-\frac{\sqrt{2\left(4-\sqrt{7}\right)}}{\sqrt{2}}\)

\(=\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}-\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\frac{\sqrt{7+2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}-\frac{\sqrt{7-2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{7}+1\right|}{\sqrt{2}}-\frac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)

\(=\frac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Bài 2:

a) Ta có: \(\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}\)

\(=\frac{\sqrt{a}\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{a+\sqrt{a}+1}-\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}\)

\(=\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)\)

\(=a-\sqrt{a}-a-\sqrt{a}\)

\(=-2\sqrt{a}\)

b) Ta có: \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)

\(=\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)

\(=\sqrt{ab}-\sqrt{ab}=0\)

d) Ta có: \(\frac{a+b+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a-b}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\sqrt{a}+\sqrt{b}-\left(\sqrt{a}+\sqrt{b}\right)\)

=0

Bài 3:

a) ĐKXĐ: x≥0

Ta có: \(\frac{\sqrt{27x}}{\sqrt{3}}=6\)

\(\Leftrightarrow\frac{\sqrt{27}\cdot\sqrt{x}}{\sqrt{3}}=6\)

\(\Leftrightarrow3\cdot\sqrt{x}=6\)

\(\Leftrightarrow\sqrt{x}=\frac{6}{3}=2\)

hay \(x=4\)(thỏa mãn)

Vậy: S={4}

b) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-1\end{matrix}\right.\Leftrightarrow x\ge0\)

Ta có: \(\sqrt{x+1}=3-\sqrt{x}\)

\(\Leftrightarrow\left(\sqrt{x+1}\right)^2=\left(3-\sqrt{x}\right)^2\)

\(\Leftrightarrow x+1=9-6\sqrt{x}+x\)

\(\Leftrightarrow x+1-9+6\sqrt{x}-x=0\)

\(\Leftrightarrow-8+6\sqrt{x}=0\)

\(\Leftrightarrow6\sqrt{x}=8\)

\(\Leftrightarrow\sqrt{x}=\frac{8}{6}=\frac{4}{3}\)

hay \(x=\frac{16}{9}\)(thỏa mãn)

Vậy: \(S=\left\{\frac{16}{9}\right\}\)

3 tháng 7 2017

Áp dụng BĐT CAuchy-Schwarz ta có:

Đặt \(A^2=\left(\sqrt{2003}+\sqrt{2005}\right)^2\)

\(\le\left(1+1\right)\left(2003+2005\right)\)

\(=2\cdot4008=8016\)

\(\Rightarrow A^2\le8016\Rightarrow A\le2\sqrt{2004}=B\)

3 tháng 7 2017

MÌNH LỚP 7 NHƯNG TRẢ LỜI ĐƯỢC LÈ

8 tháng 8 2015

\(\sqrt{2}B=\sqrt{8-2\sqrt{7}}+2=\sqrt{\left(\sqrt{7}-1\right)^2}+2=\sqrt{7}-1+2=\sqrt{7}+1\)

\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}+1\right)^2}=\sqrt{7}+1\)

Vậy A = B 

8 tháng 8 2015

A = 11 

B = 7 

--> A > B