Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét : trong các phân số cùng tử, phân số nào có mẫu lớn hơn thì lớn hơn.
Ta nhận thấy rằng: \(\frac{1}{2010}< \frac{1}{2009}< \frac{1}{1007}\)
\(\frac{1}{2011}< \frac{1}{2009}< \frac{1}{1007}\)
\(\frac{1}{2012}< \frac{1}{2009}< \frac{1}{1007}\)
Ta thấy các phân số \(\frac{1}{2010};\frac{1}{2011};\frac{1}{2012}< \frac{1}{2009}< \frac{1}{2007}\)
\(\Rightarrow\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}< \frac{1}{2009}+\frac{1}{1007}\)
Ta có :
\(\frac{x+1}{2012}+\frac{x+2}{2011}+\frac{x+3}{2010}=\frac{x+4}{2009}+\frac{x+5}{2008}+\frac{x+6}{2007}\)
\(\left(\frac{x+1}{2012}+1\right)+\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+3}{2010}+1\right)=\left(\frac{x+4}{2009}+1\right)+\left(\frac{x+5}{2008}+1\right)+\left(\frac{x+6}{2007}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+2013}{2012}+\frac{x+2013}{2011}+\frac{x+2013}{2010}=\frac{x+2013}{2009}+\frac{x+2013}{2008}+\frac{x+2013}{2007}\)
\(\Leftrightarrow\)\(\left(x+2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)\)
\(\Leftrightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}=\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(1\right)\)
Mà \(\frac{1}{2012}< \frac{1}{2009}\)\(;\)\(\frac{1}{2011}< \frac{1}{2008}\)\(;\)\(\frac{1}{2010}< \frac{1}{2007}\)
\(\Rightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra không có giá trị nào của \(x\)thoả mãn đề bài
Vậy không có gía trị nào của \(x\)hay \(x\in\left\{\varnothing\right\}\)
\(a,⇔\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)
\(⇔(x-23)(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27})=0\)
\(⇔x-23=0\) (vì \(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}>0\))
\(⇔x=23\)
\(b,⇔\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}+\frac{x+100}{95}=0\)
\(⇔(x+100)(\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95})=0\)
\(⇔x+100=0\) (vì \(\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95}>0\))
\(⇔x=-100\)
\(c,⇔(\frac{x+1}{2012}+1)+(\frac{x+2}{2011}+1)=(\frac{x+3}{2010}+1)+(\frac{x+4}{2009}+1)\)
\(⇔\frac{x+2013}{2012}+\frac{x+2013}{2011}-\frac{x+2013}{2010}-\frac{x+2013}{2009}=0\)
\(⇔(x+2013)(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009})=0\)
\(⇔x+2013=0\) (vì \(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}<0\))
\(⇔x=-2013\)
\(\frac{201-x}{99}+\frac{203}{97}=\frac{205}{95}+3\)
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\frac{2-x}{2010}-1=\frac{1-x}{2011}-\frac{x}{2012}\)
Giúp mk với ạ
\(\frac{x+1}{2012}+\frac{x+2}{2011}=\frac{x+3}{2010}+\frac{x+4}{2009}\)
\(\Leftrightarrow\frac{x+1}{2012}+1+\frac{x+2}{2011}+1=\frac{x+3}{2010}+1+\frac{x+4}{2009}+1\)
\(\Leftrightarrow\frac{x+2013}{2012}+\frac{x+2013}{2011}=\frac{x+2013}{2010}+\frac{x+2013}{2009}\)
\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right)=0\Leftrightarrow x=-2013\)
\(\frac{x+1}{2012}+\frac{X+2}{2011}=\frac{X+3}{2010}+\frac{X+4}{2009}.\)
\(\Leftrightarrow\frac{X+1}{2012}+\frac{X+2}{2011}+2=\frac{X+3}{2010}+\frac{X+4}{2009}+2\)
\(\Leftrightarrow\frac{x+1}{2012}+1+\frac{x+2}{2011}+1=\frac{x+3}{2010}+1+\frac{x+4}{2009}+1\)
\(\Leftrightarrow\frac{x+2013}{2012}+\frac{x+2013}{2012}=\frac{x+2013}{2010}+\frac{x+2013}{2009}\)
\(\Leftrightarrow\left(x+2013\right).\left\{\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right\}=0\)
Mà \(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}>0\)
\(\Leftrightarrow x+2013=0\)
\(\Leftrightarrow x=-2013\)
KL ; PT có Nghiệm \(S=\left\{-2013\right\}\)
\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\) ( có lẽ đề như này )
\(\Leftrightarrow\frac{x-1}{2013}-1+\frac{x-2}{2012}-1+\frac{x-3}{2011}-1=\frac{x-4}{2010}-1+\frac{x-5}{2009}-1+\frac{x-6}{2008}-1\)
\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2014}{2011}-\frac{x-2014}{2010}-\frac{x-2014}{2009}-\frac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
\(\Leftrightarrow x-2014=0\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\right)\)
\(\Leftrightarrow x=2014\)
...
Ta có : \(x^2+9x+20=x^2+4x+5x+20=\left(x+4\right)\left(x+5\right)\)
\(x^2+11x+30=x^2+5x+6x+30=\left(x+5\right)\left(x+6\right)\)
\(x^2+13x+42=x^2+6x+7x+42=\left(x+6\right)\left(x+7\right)\)
\(\Rightarrow Pt\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\) (*)\(ĐKXĐ:x\ne-4;x\ne-5;x\ne-6;x\ne-7\)
(*) \(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow3.18=x^2+4x+7x+28\)
\(\Leftrightarrow x^2-2x+13x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-13\left(tm\right)\end{cases}}}\)
\(\frac{x+1}{2010}+\frac{x+2}{2009}+\frac{x+3}{2008}+...+\frac{x+2010}{1}=\left(-2010\right)\)
\(\Rightarrow\left(\frac{x+1}{2010}+1\right)+\left(\frac{x+2}{2009}+1\right)+...+\left(\frac{x+2010}{1}+1\right)=-2010+2010\)
\(\Rightarrow\frac{x+2011}{2010}+\frac{x+2011}{2009}+...+\frac{x+2011}{1}=0\)
\(\Rightarrow\left(x+2011\right)\left(1+\frac{1}{2}+...+\frac{1}{2009}+\frac{1}{2010}\right)=0\)
\(\Rightarrow x+2011=0\Leftrightarrow x=-2011\)