K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

a. \(\sqrt[4]{\sqrt{3}-1}\) và \(\sqrt[3]{\sqrt{3}-1}\)

Ta có : \(\begin{cases}\sqrt[4]{\sqrt{3}-1}=\left(\sqrt{3}-1\right)^{\frac{1}{4}};\sqrt[3]{\sqrt{3}-1}=\left(\sqrt{3}-1\right)^{\frac{1}{3}}\\0< \sqrt{3}-1< 1;\frac{1}{4}< \frac{1}{3}\end{cases}\)

             \(\Rightarrow\sqrt[4]{\sqrt{3}-1}>\left(\sqrt{3}-1\right)^{\frac{1}{4}}\)

 

b. \(\log_32\) và \(\log_23\)

Ta có : \(\log_32< \log_33=1=\log_22< \log_23\Rightarrow\log_32< \log_23\)

 
26 tháng 3 2016

a) Ta có \(\log_32<\log_33=1=\log_22<\log_23\)

b) \(\log_23<\log_24=2=\log_39<\log_311\)

c) Đưa về cùng 1 lôgarit cơ số 10, ta có 

\(\frac{1}{2}+lg3=\frac{1}{2}lg10+lg3=lg3\sqrt{10}\)

\(lg19-lg2=lg\frac{19}{2}\)

So sánh 2 số \(3\sqrt{10}\) và \(\frac{19}{2}\) ta có :

\(\left(3\sqrt{10}\right)^2=9.10=90=\frac{360}{4}<\frac{361}{4}=\left(\frac{19}{2}\right)^2\)

Vì vậy : \(3\sqrt{10}<\frac{19}{2}\)

Từ đó suy ra \(\frac{1}{2}+lg3\)<\(lg19-lg2\)

d) Ta có : \(\frac{lg5+lg\sqrt{7}}{2}=lg\left(5\sqrt{7}\right)^{\frac{1}{2}}=lg\sqrt{5\sqrt{7}}\)

Ta so sánh 2 số : \(\sqrt{5\sqrt{7}}\) và \(\frac{5+\sqrt{7}}{2}\) 

Ta có :

\(\sqrt{5\sqrt{7}}^2=5\sqrt{7}\)

\(\left(\frac{5+\sqrt{7}}{2}\right)^2=\frac{32+10\sqrt{7}}{4}=8+\frac{5}{2}\sqrt{7}\)

\(8+\frac{5}{2}\sqrt{7}-5\sqrt{7}=8-\frac{5}{2}\sqrt{7}=\frac{16-5\sqrt{7}}{2}=\frac{\sqrt{256}-\sqrt{175}}{2}>0\)

Suy ra : \(8+\frac{5}{2}\sqrt{7}>5\sqrt{7}\)

Do đó : \(\frac{5+\sqrt{7}}{2}>\sqrt{5\sqrt{7}}\)

và \(lg\frac{5+\sqrt{7}}{2}>\frac{lg5+lg\sqrt{7}}{2}\)

 

26 tháng 3 2016

Chọn 2 làm cơ số, ta có :

\(A=\log_616=\frac{\log_216}{\log_26}=\frac{4}{1=\log_23}\)

Mặt khác :

\(x=\log_{12}27=\frac{\log_227}{\log_212}=\frac{3\log_23}{2+\log_23}\)

Do đó : \(\log_23=\frac{2x}{3-x}\) suy ra \(A=\frac{4\left(3-x\right)}{3+x}\)

b) Ta có :

\(B=\frac{lg30}{lg125}=\frac{lg10+lg3}{3lg\frac{10}{2}}=\frac{1+lg3}{3\left(1-lg2\right)}=\frac{1+a}{3\left(1-b\right)}\)

c) Ta có :

\(C=\log_65+\log_67=\frac{1}{\frac{1}{\log_25}+\frac{1}{\log_35}}+\frac{1}{\frac{1}{\log_27}+\frac{1}{\log_37}}\)

Ta tính \(\log_25,\log_35,\log_27,\log_37\) theo a, b, c .

Từ : \(a=\log_{27}5=\log_{3^3}5=\frac{1}{3}\log_35\)

Suy ra \(\log_35=3a\) do đó :

                                     \(\log_25=\log_23.\log35=3ac\)

Mặt khác : \(b=\log_87=\log_{2^3}7=\frac{1}{3}\log_27\) nên \(\log_27=3b\)

Do đó : \(\log_37=\frac{\log_27}{\log_23}=\frac{3b}{c}\)

Vậy : \(C=\frac{1}{\frac{1}{3ac}+\frac{1}{3a}}+\frac{1}{\frac{1}{3b}+\frac{c}{3b}}=\frac{3\left(ac+b\right)}{1+c}\)

d) Điều kiện : \(a>0;a\ne0;b>0\)

Từ giả thiết \(\log_ab=\sqrt{3}\) suy ra \(b=a^{\sqrt{3}}\). Do đó :

\(\frac{\sqrt{b}}{a}=a^{\frac{\sqrt{3}}{2}-1};\frac{\sqrt[3]{b}}{\sqrt{a}}=a^{\frac{\sqrt{3}}{3}-\frac{1}{2}}=a^{\frac{\sqrt{3}}{3}\left(\frac{\sqrt{3}}{2}-1\right)}\)

Từ đó ta tính được :

\(A=\log_{a^{\alpha}}a^{\frac{-\sqrt{3}}{3}\alpha}=\log_{a^{\alpha}}\left(a^{\alpha}\right)^{\frac{-\sqrt{3}}{3}}=\frac{-\sqrt{3}}{3}\) với \(\alpha=\frac{\sqrt{3}}{2}-1\)

 

 

30 tháng 5 2017

a) \(4^{log^3_2}=\left(2^2\right)^{log^3_2}=\left(2^{log^3_2}\right)^2=3^2=9\).
b) \(27^{log^2_9}=\left(3^3\right)^{log^2_{3^2}}=3^{3.\dfrac{1}{2}.log^2_3}=\left(3^{log^2_3}\right)^{\dfrac{3}{2}}=2^{\dfrac{3}{2}}=\sqrt{8}\).
c) \(9^{log^2_{\sqrt{3}}}=9^{log^2_{9^{\dfrac{1}{4}}}}=9^{4.log^2_9}=\left(9^{log^2_9}\right)^4=2^4=16\).
d) \(4^{log^{27}_8}=2^{2.log^{27}_{2^3}}=2^{\dfrac{2}{3}.log^{27}_2}=\left(2^{log^{3^3}_2}\right)^{\dfrac{2}{3}}=\left(3^3\right)^{\dfrac{2}{3}}=3^2=9\).

GV
22 tháng 4 2017

a) \(\left(\sqrt{17}\right)^6=\sqrt{\left(17^3\right)^2}=17^3=4913\)

\(\left(\sqrt[3]{28}\right)^6=\sqrt[3]{\left(28^2\right)^3}=28^2=784\)

=> \(\left(\sqrt{17}\right)^6>\left(\sqrt[3]{28}\right)^6\)

=> \(\sqrt{17}>\sqrt[3]{28}\)

GV
22 tháng 4 2017

b) \(\left(\sqrt[4]{13}\right)^{20}=13^5=371293\)

\(\left(\sqrt[5]{23}\right)^{20}=23^4=279841\)

=> \(\sqrt[4]{13}>\sqrt[5]{23}\)

26 tháng 3 2016

d) So sánh :

\(\sqrt{3}+1\) và \(\sqrt{7}\), ta có :

\(\left(\sqrt{3}+1\right)^2-\left(\sqrt{7}\right)^2=3+1+2\sqrt{3}-7=2\sqrt{3}-3\)

Hơn nữa : 

\(\left(2\sqrt{3}\right)^2-3^2=4.3-9=9>0\)

Do đó 

\(\sqrt{3}+1>\sqrt{7}\)

Mà \(e^{\sqrt{3}+1}>e^{\sqrt{7}}\)

26 tháng 3 2016

c) Ta có :

\(\left(\frac{\pi}{5}\right)^{\sqrt{10}-3}=\frac{\left(\frac{\pi}{5}\right)^{\sqrt{10}}}{\left(\frac{\pi}{5}\right)^3}\)

Lại có \(0<\pi<5\) nên \(0<\frac{\pi}{5}<1\) và \(\sqrt{10}>3\)

Do đó : \(\left(\frac{\pi}{5}\right)^{\sqrt{10}}<\left(\frac{\pi}{5}\right)^3\)

Mà \(\left(\frac{\pi}{5}\right)^3>0\) nên \(\left(\frac{\pi}{5}\right)^{\sqrt{10}-3}=\frac{\left(\frac{\pi}{5}\right)^{10}}{\left(\frac{\pi}{5}\right)^3}<1\)

13 tháng 5 2016

a. \(\log_23\) và \(\log_311\)

Ta có : \(\log_23< \log_24=4=\log_39< \log_311\Rightarrow\log_23< \log_211\)

 

b.\(\left(\frac{5}{7}\right)^{\frac{-\sqrt{5}}{2}}\) và 1

Ta có : \(\begin{cases}\frac{-\sqrt{5}}{2}< 0\\0< \frac{5}{7}< 1\end{cases}\)\(\Rightarrow\left(\frac{5}{7}\right)^{\frac{-\sqrt{5}}{2}}>\left(\frac{5}{7}\right)^0=1\)

14 tháng 5 2016

a. \(0,7^{\frac{\sqrt{5}}{2}}\) và \(0,7^{\frac{1}{3}}\).

Ta có : \(\begin{cases}\left(\frac{\sqrt{5}}{6}\right)^2=\frac{5}{36}>\frac{4}{36}=\left(\frac{1}{3}\right)^2\Rightarrow\frac{\sqrt{5}}{6}>\frac{1}{3}\\0< 0,7< 1\end{cases}\)

                                        \(\Rightarrow0,7^{\frac{\sqrt{5}}{6}}< 0,7^{\frac{1}{3}}\)

 

b. \(2^{\sqrt{3}}\) và \(3^{\sqrt{2}}\)

Ta có : \(\begin{cases}\left(2^{\sqrt{3}}\right)^{\sqrt{3}}=2^3=8\\\left(3^{\sqrt{2}}\right)^{\sqrt{3}}=3^{\sqrt{6}}>3^2=9\end{cases}\)

\(\Rightarrow\left(2^{\sqrt{3}}\right)^{\sqrt{3}}< \left(3^{\sqrt{2}}\right)^{\sqrt{3}}\)

\(\Rightarrow2^{\sqrt{3}}< 3^{\sqrt{2}}\)

 

c. \(\log_{0.4}\sqrt{2}\) và \(\log_{0,2}0,34\)

Ta có : \(\begin{cases}0< 0,4< 1;\sqrt{2}>1\Rightarrow\log_{0,4}\sqrt{2}< 0\\0< 0,2< 1;0< 1< 0,34\Rightarrow\log_{0,2}0,3>0\end{cases}\)

\(\Rightarrow\log_{0,4}\sqrt{2}< \log_{0,2}0,34\)

26 tháng 3 2016

a) Áp dụng bất đẳng thức Cauchy cho các số dương, ta có :

\(\log_23+\log_32>2\sqrt{\log_23.\log_32}=2\sqrt{1}=2\)

Không xảy ra dấu "=" vì \(\log_23\ne\log_32\)

Mặt khác, ta lại có :

\(\log_23+\log_32<\frac{5}{2}\Leftrightarrow\log_23+\frac{1}{\log_23}-\frac{5}{2}<0\)

                             \(\Leftrightarrow2\log^2_23-5\log_23+2<0\)

                            \(\Leftrightarrow\left(\log_23-1\right)\left(\log_23-2\right)<0\) (*)

Hơn nữa, \(2\log_23>2\log_22>1\) nên \(2\log_23-1>0\)

Mà \(\log_23<\log_24=2\Rightarrow\log_23-2<0\)

Từ đó suy ra (*) luôn đúng. Vậy \(2<\log_23+\log_32<\frac{5}{2}\)

b) Vì \(a,b\ge1\) nên \(\ln a,\ln b,\ln\frac{a+b}{2}\) không âm. 

Áp dụng bất đẳng thức Cauchy ta có

\(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\)

Suy ra 

\(2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

Mặt khác :

\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\)

Từ đó ta thu được :

\(\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)

c) Ta chứng minh bài toán tổng quát :

\(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi n >1

Thật vậy, 

\(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\) 

suy ra :

\(\log_{\left(n+1\right)^2}n\left(n+2\right)<1\Leftrightarrow\frac{1}{2}\log_{n+1}n\left(n+2\right)<1\)

                                  \(\Leftrightarrow\log_{n+1}n+\log_{\left(n+1\right)}n\left(n+2\right)<2\)

Áp dụng bất đẳng thức Cauchy ta có :

\(2>\log_{\left(n+1\right)}n+\log_{\left(n+1\right)}n\left(n+2\right)>2\sqrt{\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)}\)

Do đó ta có :

\(1>\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)\) và \(\log_n\left(n+1>\right)\log_{\left(n+1\right)}\left(n+2\right)\) với mọi n>1

 

26 tháng 3 2016

a) \(\sqrt[3]{10}=\sqrt[15]{10^5}>\sqrt[15]{20^3=\sqrt[5]{20}}\)

b) Vì \(\frac{1}{e}<1\) và \(\sqrt{8}-3<0\) nên \(\left(\frac{1}{e}\right)^{\sqrt{8}-3}>1\)

c) Vì \(\frac{1}{8}<1\) và \(\pi>3.14\) nên \(\left(\frac{1}{8}\right)^{\pi}<\left(\frac{1}{8}\right)^{3,14}\)

d)  Vì \(\frac{1}{\pi}<1\)  và \(1,4<\sqrt{2}\)  nên \(\left(\frac{1}{\pi}\right)^{1,4}>\pi^{-\sqrt{2}}\)