Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\log_32<\log_33=1=\log_22<\log_23\)
b) \(\log_23<\log_24=2=\log_39<\log_311\)
c) Đưa về cùng 1 lôgarit cơ số 10, ta có
\(\frac{1}{2}+lg3=\frac{1}{2}lg10+lg3=lg3\sqrt{10}\)
\(lg19-lg2=lg\frac{19}{2}\)
So sánh 2 số \(3\sqrt{10}\) và \(\frac{19}{2}\) ta có :
\(\left(3\sqrt{10}\right)^2=9.10=90=\frac{360}{4}<\frac{361}{4}=\left(\frac{19}{2}\right)^2\)
Vì vậy : \(3\sqrt{10}<\frac{19}{2}\)
Từ đó suy ra \(\frac{1}{2}+lg3\)<\(lg19-lg2\)
d) Ta có : \(\frac{lg5+lg\sqrt{7}}{2}=lg\left(5\sqrt{7}\right)^{\frac{1}{2}}=lg\sqrt{5\sqrt{7}}\)
Ta so sánh 2 số : \(\sqrt{5\sqrt{7}}\) và \(\frac{5+\sqrt{7}}{2}\)
Ta có :
\(\sqrt{5\sqrt{7}}^2=5\sqrt{7}\)
\(\left(\frac{5+\sqrt{7}}{2}\right)^2=\frac{32+10\sqrt{7}}{4}=8+\frac{5}{2}\sqrt{7}\)
\(8+\frac{5}{2}\sqrt{7}-5\sqrt{7}=8-\frac{5}{2}\sqrt{7}=\frac{16-5\sqrt{7}}{2}=\frac{\sqrt{256}-\sqrt{175}}{2}>0\)
Suy ra : \(8+\frac{5}{2}\sqrt{7}>5\sqrt{7}\)
Do đó : \(\frac{5+\sqrt{7}}{2}>\sqrt{5\sqrt{7}}\)
và \(lg\frac{5+\sqrt{7}}{2}>\frac{lg5+lg\sqrt{7}}{2}\)
a) \(\sqrt[3]{10}=\sqrt[15]{10^5}>\sqrt[15]{20^3=\sqrt[5]{20}}\)
b) Vì \(\frac{1}{e}<1\) và \(\sqrt{8}-3<0\) nên \(\left(\frac{1}{e}\right)^{\sqrt{8}-3}>1\)
c) Vì \(\frac{1}{8}<1\) và \(\pi>3.14\) nên \(\left(\frac{1}{8}\right)^{\pi}<\left(\frac{1}{8}\right)^{3,14}\)
d) Vì \(\frac{1}{\pi}<1\) và \(1,4<\sqrt{2}\) nên \(\left(\frac{1}{\pi}\right)^{1,4}>\pi^{-\sqrt{2}}\)
d) So sánh :
\(\sqrt{3}+1\) và \(\sqrt{7}\), ta có :
\(\left(\sqrt{3}+1\right)^2-\left(\sqrt{7}\right)^2=3+1+2\sqrt{3}-7=2\sqrt{3}-3\)
Hơn nữa :
\(\left(2\sqrt{3}\right)^2-3^2=4.3-9=9>0\)
Do đó
\(\sqrt{3}+1>\sqrt{7}\)
Mà \(e^{\sqrt{3}+1}>e^{\sqrt{7}}\)
c) Ta có :
\(\left(\frac{\pi}{5}\right)^{\sqrt{10}-3}=\frac{\left(\frac{\pi}{5}\right)^{\sqrt{10}}}{\left(\frac{\pi}{5}\right)^3}\)
Lại có \(0<\pi<5\) nên \(0<\frac{\pi}{5}<1\) và \(\sqrt{10}>3\)
Do đó : \(\left(\frac{\pi}{5}\right)^{\sqrt{10}}<\left(\frac{\pi}{5}\right)^3\)
Mà \(\left(\frac{\pi}{5}\right)^3>0\) nên \(\left(\frac{\pi}{5}\right)^{\sqrt{10}-3}=\frac{\left(\frac{\pi}{5}\right)^{10}}{\left(\frac{\pi}{5}\right)^3}<1\)
a. Ta có : \(\begin{cases}\left(0,01\right)^{-\sqrt{3}}=\left(10^{-2}\right)^{-\sqrt{3}}=\left(10\right)^{2\sqrt{3}};1000=10^3\\2\sqrt{3}>3\end{cases}\)
\(\Rightarrow\left(0,01\right)^{-\sqrt{3}}>1000\)
b. Ta có :
\(\frac{\pi}{2}>1\) và \(2\sqrt{2}< 3\)
\(\Rightarrow\left(\frac{\pi}{2}\right)^{2\sqrt{2}}< \left(\frac{\pi}{2}\right)^3\)
a) \(A=\left[\left(\frac{1}{5}\right)^2\right]^{\frac{-3}{2}}-\left[2^{-3}\right]^{\frac{-2}{3}}=5^3-2^2=121\)
b) \(B=6^2+\left[\left(\frac{1}{5}\right)^{\frac{3}{4}}\right]^{-4}=6^2+5^3=161\)
c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}=\frac{a^{\sqrt{5}+3}.a^{5-\sqrt{5}}}{a^{\left(2\sqrt{2}\right)^2-1^2}}\)
\(=\frac{a^{\sqrt{5}+3+5-\sqrt{5}}}{a^{8-1}}=\frac{a^8}{a^7}=a\)
d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left[1-2\sqrt{\frac{b}{a}}+\left(\sqrt{\frac{b}{a}}\right)^2\right]\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left(1-\sqrt{b}a\right)^2\)
a) \(\left(\sqrt{17}\right)^6=\sqrt{\left(17^3\right)^2}=17^3=4913\)
\(\left(\sqrt[3]{28}\right)^6=\sqrt[3]{\left(28^2\right)^3}=28^2=784\)
=> \(\left(\sqrt{17}\right)^6>\left(\sqrt[3]{28}\right)^6\)
=> \(\sqrt{17}>\sqrt[3]{28}\)
b) \(\left(\sqrt[4]{13}\right)^{20}=13^5=371293\)
\(\left(\sqrt[5]{23}\right)^{20}=23^4=279841\)
=> \(\sqrt[4]{13}>\sqrt[5]{23}\)
a) \(A=\frac{a^{\frac{5}{2}}\left(a^{\frac{1}{2}}-a^{\frac{-3}{2}}\right)}{a^{\frac{1}{2}}\left(a^{\frac{-1}{2}}-a^{\frac{3}{2}}\right)}=\frac{a^3-a}{1-a^2}=-a\)
Do đó : \(A=-\left(\pi-3\sqrt{2}\right)=3\sqrt{2}-\pi\)
b) Rút gọn B ta có :
\(B=\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)\left[\left(a^{\frac{1}{3}}\right)^2+\left(b^{\frac{1}{3}}\right)^2\right]=\left(a^{\frac{1}{3}}\right)^3+\left(b^{\frac{1}{3}}\right)^3=a+b\)
Do đó :
\(B=\left(7-\sqrt{2}\right)+\left(\sqrt{2}+3\right)=10\)
a. \(0,7^{\frac{\sqrt{5}}{2}}\) và \(0,7^{\frac{1}{3}}\).
Ta có : \(\begin{cases}\left(\frac{\sqrt{5}}{6}\right)^2=\frac{5}{36}>\frac{4}{36}=\left(\frac{1}{3}\right)^2\Rightarrow\frac{\sqrt{5}}{6}>\frac{1}{3}\\0< 0,7< 1\end{cases}\)
\(\Rightarrow0,7^{\frac{\sqrt{5}}{6}}< 0,7^{\frac{1}{3}}\)
b. \(2^{\sqrt{3}}\) và \(3^{\sqrt{2}}\)
Ta có : \(\begin{cases}\left(2^{\sqrt{3}}\right)^{\sqrt{3}}=2^3=8\\\left(3^{\sqrt{2}}\right)^{\sqrt{3}}=3^{\sqrt{6}}>3^2=9\end{cases}\)
\(\Rightarrow\left(2^{\sqrt{3}}\right)^{\sqrt{3}}< \left(3^{\sqrt{2}}\right)^{\sqrt{3}}\)
\(\Rightarrow2^{\sqrt{3}}< 3^{\sqrt{2}}\)
c. \(\log_{0.4}\sqrt{2}\) và \(\log_{0,2}0,34\)
Ta có : \(\begin{cases}0< 0,4< 1;\sqrt{2}>1\Rightarrow\log_{0,4}\sqrt{2}< 0\\0< 0,2< 1;0< 1< 0,34\Rightarrow\log_{0,2}0,3>0\end{cases}\)
\(\Rightarrow\log_{0,4}\sqrt{2}< \log_{0,2}0,34\)
a. \(\sqrt[4]{\sqrt{3}-1}\) và \(\sqrt[3]{\sqrt{3}-1}\)
Ta có : \(\begin{cases}\sqrt[4]{\sqrt{3}-1}=\left(\sqrt{3}-1\right)^{\frac{1}{4}};\sqrt[3]{\sqrt{3}-1}=\left(\sqrt{3}-1\right)^{\frac{1}{3}}\\0< \sqrt{3}-1< 1;\frac{1}{4}< \frac{1}{3}\end{cases}\)
\(\Rightarrow\sqrt[4]{\sqrt{3}-1}>\left(\sqrt{3}-1\right)^{\frac{1}{4}}\)
b. \(\log_32\) và \(\log_23\)
Ta có : \(\log_32< \log_33=1=\log_22< \log_23\Rightarrow\log_32< \log_23\)
a. \(\log_23\) và \(\log_311\)
Ta có : \(\log_23< \log_24=4=\log_39< \log_311\Rightarrow\log_23< \log_211\)
b.\(\left(\frac{5}{7}\right)^{\frac{-\sqrt{5}}{2}}\) và 1
Ta có : \(\begin{cases}\frac{-\sqrt{5}}{2}< 0\\0< \frac{5}{7}< 1\end{cases}\)\(\Rightarrow\left(\frac{5}{7}\right)^{\frac{-\sqrt{5}}{2}}>\left(\frac{5}{7}\right)^0=1\)