Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2+22+23+24+...+212
A=(2+22+23)+(24+25+26)+...+(210+211+212)
A=14.1+23.14+...+29.14
A=14(1+23+...+29)\(⋮\)7
Vậy A\(⋮\)7
\(A=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)=7\cdot\left(2+...+2^{10}\right)⋮7\)
\(A=2+2^2+2^3+....+2^{12}\\ \Rightarrow A=\left(2+2^2+2^3\right)+.....+\left(2^{10}+2^{11}+2^{12}\right)\\ \Rightarrow A=2.\left(1+2+2^2\right)+....+2^{10}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+....+2^{10}.7\\ \Rightarrow A=7\left(2+....+2^{10}\right)⋮7\)
Với n=1 thì đằng thức trên luôn đúng
Giả sử đẳng thức trên đúng với n=k tức là \(1^3+2^3+....+k^3=\left(1+2+...+n\right)^2\)
Ta CM : Đằng thức trên cũng đúng với n=k+1
khi đó đẳng thức trở thành
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+\left(k+1\right)\right)^2\left(1\right)\)
VP(1)=\(\left(\dfrac{k+2}{2}\right)^2=\dfrac{k^2+4k+4}{4}\)
CMTT : VT(1) cũng bằng nó
=> đpcm theo phương pháp quy nạp
+ Từ 1 đến 9 có 9 số, mỗi số có 1 chữ số.
Vậy có : 1 x 9 = 9 ( chữ số )
+ Từ 10 đến 60 có : ( 60 - 10 ) : 1 + 1 = 51 ( số ), mỗi số có 2 chữ số.
Vậy có : 51 x 2 = 102 ( chữ số )
Vậy A có : 9 + 102 = 121 ( chữ số )
Đáp số : 121 chữ số
Với một điểm bất kì trong 6 điểm phân biệt cho trước, ta vẽ được 5 đường thẳng tới các điểm còn lại. Như vậy với 6 điểm, ta vẽ được 5.6 đường thẳng tới các điểm còn lại. Nhưng như vậy một đường thẳng đã được tính 2 lần do đó thực sự chỉ có 5.6 : 2 = 15 ( đường thẳng)
Giải hộ mình nhanh nhé
127^23<128^23=(2^7)^23=2^161
153^18>152^18=(2^9)^18= 2^162
Vì : 127^23< 2^161<2^162<513^18
=>127^23<513^18
chưa chắc đã đúng đâu bn nhé