Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : A = 3.(3^9+1)-2/3^9+1 = 3 - 2/3^9+1
B = 3.(3^8+1)-2/3^8+1 = 3 - 2/3^8+1
Vì 3^9+1 > 3^8+1 => 2/3^9+1 < 2/3^8+1
=> -2/3^9+1 > -2/3^8+1
=> A > B
Tk mk nha
a) 27/82 < 26/75 ( 2025/6250 < 2132\6250)
b) -49/78 > 64/ -95 ( - 3136/7410 > -4992/7410)
c) ta có: \(A=\frac{54.107-53}{53.107}=\frac{53.107+(107-53)}{53.107+54}=\frac{53.107+54}{53.107+54}=1\)
\(B=\frac{135.269-133}{134.269+135}=\frac{134.269+\left(269-133\right)}{134.269+135}=\frac{134.269+136}{134.269+135}>1\)
\(\Rightarrow A< B\)
d) ta có: \(A=\frac{3^{10}+1}{3^9+1}=\frac{3.\left(3^9+1\right)-2}{3^9+1}=\frac{3.\left(3^9+1\right)}{3^9+1}-\frac{2}{3^9+1}=3-\frac{2}{3^9+1}\)
\(B=\frac{3^9+1}{3^8+1}=\frac{3.\left(3^8+1\right)-2}{3^8+1}=\frac{3.\left(3^8+1\right)}{3^8+1}-\frac{2}{3^8+1}=3-\frac{2}{3^8+1}\)
mà \(\frac{2}{3^9+1}< \frac{2}{3^8+1}\Rightarrow3-\frac{2}{3^9+1}< 3-\frac{2}{3^8+1}\)
=> A < B
Ta có:
\(\frac{1}{3}\)A = \(\frac{3^{10}+1}{3^{10}+3}\)
= \(\frac{3^{10}+1}{3^{10}+1+2}\)
= \(1+\frac{3^{10}+1}{2}\)
\(\frac{1}{3}\)B = \(\frac{3^9+1}{3^9+3}\)
= \(\frac{3^9+1}{3^9+1+2}\)
= 1 + \(\frac{3^9+1}{2}\)
Đương nhiên \(1+\frac{3^{10}+1}{2}\) > 1 + \(\frac{3^9+1}{2}\)
=> A > B
8^9 - 8^7 > 1 1
1/8^8 - 1/8^10 < 1 2
1 - 1 = 0 3
Từ 1,2,3 => P/s 1 > P/s 2
bai 3
\(A=\frac{10^{2004}+1}{10^{2005}+1}\)
\(10A=\frac{10^{2004}+10}{10^{2005}+1}\)
\(10A=1\frac{9}{10^{2005}+1}\)
\(B=\frac{10^{2005}+1}{10^{2006}+1}\)
\(10B=\frac{10^{2005}+10}{10^{2006}+1}\)
\(10B=1\frac{9}{10^{2006}+1}\)
Vì \(1\frac{9}{10^{2005}+1}>1\frac{9}{10^{2006}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
bai 4
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^8}\)
\(\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+....+\frac{1}{3^9}\)
\(A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^9}\)
A= 11=1
22=4
33=27
44=256
...
88=16777216
=> 1+4+27+256+3125+46656+823543+16777216=17650801
=> A=17650801
B= 99=387420489
Vì: 17650801<387420489
Vậy, ta kết luận: A<B
Ta thấy: 11<98
22<98
33<98
………
88<98
=>A=11+22+33+…+88<98+98+98+…+98(8 thừa số 98)<98+98+98+…+98+98(8 thừa số 98)
=>A<98+98+98+…+98+98
=>A<(1+1+1+…+1+1).98
=>A<9.98
=>A<99=B
=>A<B
Vậy A<B