Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 920=(92)10=8110
vì 81 <9999 suy ra 920<999910
b, vì 3>2 suy ra 321>221
a) 544 giữ nguyên
2112 = ( 213 )4 = 92614
vì 54 < 9261 nên 544 < 2112
Ý a làm như bạn Huy Hoàng indonaca là đúng.
b) Ta có:
\(1+2+...+100=5050=5^2.202\)
\(5^8=5^2.15625\)
Vì \(202< 15625\) => \(1+2+...+100< 5^8\)
a)
\(5^{2222}=\left(5^2\right)^{1111}=25^{1111}\)
\(2^{5555}=\left(2^5\right)^{1111}=32^{1111}\)
=> tự kết luận
b)
ĐỀ ?????
a) \(5^{2222}=5^{2.1111}=25^{1111}\)
\(2^{5555}=2^{5.1111}=32^{1111}\)
Do \(25^{1111}< 32^{1111}\)nên \(5^{2222}< 2^{5555}\)
b) \(4a=3b\)=> \(\frac{a}{3}=\frac{b}{4}\)
Áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{21}{7}=3\)
suy ra: \(\frac{a}{3}=3\)=> \(a=9\)
\(\frac{b}{4}=3\)=> \(b=21\)
Vậy....
a) 3^40= 3^4.10=(3^4)10=81^10
11^21> 11^20=11^2.10=(11^2)10=121^10
→ 3^40< 11^21
b) 2^195=2^15.13=(2^15)13=32768^13
3^130=3^10.13= (3^10)13=59049^13
→2^195<3^130
c) 2^90=2^5.18=(2^5)18= 32^18
5^36=5^2.18=(5^2)18=25^18
→2^90>5^36
a) có 231=2.230=2.810
321=3.320=3.910
vì 2.810 < 3.910 nên 231 < 321
b)
có S = 1 + 2 + ... + 250
<=> S = 20 + 21 + 22 + 23 + ... + 250
=> 2S = 2(20 + 21 + 22 + 23 + ... + 250) = 21 + 22 + 23 + ... + 251
=> 2S - S = 21 + 22 + 23 + ... + 251 - ( 20 + 21 + 22 + 23 + ... + 250)
=> S = 21 + 22 + 23 + ... + 251 - 20 - 21 - 22 - 23 - ... - 250
=> S = 251 - 20
=> S = 251 -1 < 251
=> S < 251
2) a) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\)
\(\frac{21}{81^8}=\frac{21}{\left(3^4\right)^8}=\frac{21}{3^{32}}=\frac{21.3}{3^{33}}=\frac{63}{3^{33}}>\frac{1}{3^{33}}\)
=> \(\frac{21}{81^8}>\frac{1}{27^{11}}\)
b) Rõ ràng : 399 < 1121 => \(\frac{1}{399}>\frac{1}{11^{21}}\)
a) \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}\)=> \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{24}{54}=\frac{4}{9}\)
=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=1-\sqrt[3]{\frac{4}{9}}\)
=> x = \(\frac{6}{5}-\frac{6}{5}.\sqrt[3]{\frac{4}{9}}\)
b) => \(\frac{1}{13}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\)
=> \(\left(\frac{1}{2}x-1\right)^4=\frac{13}{48}\)
=> \(\frac{1}{2}x-1=\sqrt[4]{\frac{13}{48}}\) hoặc \(\frac{1}{2}x-1=-\sqrt[4]{\frac{13}{48}}\)
=> \(x=2+2\sqrt[4]{\frac{13}{48}}\) hoặc \(x=2-2\sqrt[4]{\frac{13}{48}}\)
ta có :
a = \(\left(2^3\right)^{21}:2^{28}=2^{63}:2^{28}=2^{35}=2^{7.5}=\left(2^5\right)^7=32^7\)
b = \(\frac{6^{21}}{2^{21}}=\frac{\left(2.3\right)^{21}}{2^{21}}=\frac{2^{21}.3^{21}}{2^{21}}=3^{21}=3^{7.3}=\left(3^3\right)^7=27^7\)
vì 32 > 27 nên 327>277
Vậy a > b
a=(23)21 :228=263:228=235
b=321
a:b=235:321=221x214:321=2/321x214=2/314x2/37x214=4/314x2/37=4/37x4/37x2/37=27x4/37>1
Vậy a>b