Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{2009^{2008}+1}{2009^{2009}+1}\)và \(B=\frac{2009^{2009}+1}{2009^{2010}+1}\)
\(A=\frac{2009^{2008}+1}{2009^{2009}+1}\Rightarrow2009A=\frac{2009.\left(2009^{2008}+1\right)}{2009^{2009}+1}=\frac{2009^{2009}+2009}{2009^{2009}+1}=1+\frac{2008}{2009^{2009}+1}\)
\(B=\frac{2009^{2009}+1}{2009^{2010}+1}\Rightarrow2009B=\frac{2009.\left(2009^{2009}+1\right)}{2009^{2010}+1}=\frac{2009^{2010}+2009}{2009^{2010}+1}=1+\frac{2008}{2009^{2010}+1}\)
Vì \(\frac{2008}{2009^{2009}+1}>\frac{2008}{2009^{2010}+1}\Rightarrow2009A>2009B\Rightarrow A>B\)
a) Ta có :
2711 = (33)11 = 333 ; 818 = (34)8 = 332
Ta thấy : 333 > 332 => 2711 > 818
b) Ta có :
5 < 11; 23 < 22 => 523 < 1124
c) ta có :
2009 x 2009 = 2009 x 2008 + 2009
2008 x 2010 = 2008 x 2009 + 2008
Ta thấy : 2009 x 2008 + 2009 > 2008 x 2009 + 2008
=> 2009 x 2009 > 2008 x 2010
d) Ta có :
32n = (32)n = 9n
23n = (23)n = 8n
Ta thấy : 9n > 8n => 32n > 23n
a, Ta có:
2711=(33)11=333
818=(34)=332
Mà 333>332
=> 2711>818
Ta có :
\(B=\frac{2009^{2009}+1}{2009^{2010}+1}< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009.\left(2009^{2008}+1\right)}{2009.\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}=A\)
Vậy A > B
Ta có :
\(m.A=\frac{m^{2009}+m}{m^{2009}+1}=\frac{m^{2009}+1+\left(m-1\right)}{m^{2009}+1}=1+\frac{m-1}{m^{2009}+1}\)
\(m.B=\frac{m^{2010}+m}{m^{2010}+1}=\frac{m^{2010}+1+\left(m-1\right)}{m^{2010}+1}=1+\frac{m-1}{m^{2010}+1}\)
Vì m2009+1 < m2010+1 => m.A > m.B => A > B
K NHA BẠN
a/ Do : 2009/2010 > 2009/2011, 2009/2011 < 2010/2011 nên 2009/2010 < 2010/2011
1 đúng
Ta có: 200/201+201/202>200+201/202 (1)
200+201/201+202<200+201/202 (2)
từ (1) và (2) suy ra 200/201+201/202>200+201/201+202
(23x5x7)(52x73)/(2x5x72)2=23x(5x52)x(7x73)/22x52x72x2=23x53x74/22x52x74=2x5=10
\(C=\frac{1+8^{2008}}{1+8^{2009}}\\ 8C=\frac{8+8^{2009}}{1+8^{2009}}=1+\frac{7}{1+8^{2009}}\\ D=\frac{1+8^{2009}}{1+8^{2010}}\\ 8D=\frac{8+8^{2010}}{1+8^{2010}}=1+\frac{7}{1+8^{2010}}\\ \Rightarrow8C>8D\Rightarrow C>D\)