K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2020

a) Ta có :

\(\hept{\begin{cases}27^{11}=\left(3^3\right)^{11}=3^{33}\\81^8=\left(3^4\right)^8=3^{32}\end{cases}}\)

Vì 333 > 332

=> 2711 > 818

b) Ta có:

\(\hept{\begin{cases}2^{225}=\left(2^3\right)^{75}=8^{75}\\3^{150}=\left(3^2\right)^{75}=9^{75}\end{cases}}\)

Vì 875 < 975

=> 2225 < 3150

Thôi còn lại bn tự làm nốt nha . Nhìn mà nản !!

4 tháng 9 2020

a) \(\hept{\begin{cases}27^{11}=\left(3^3\right)^{11}=3^{33}\\81^8=\left(3^4\right)^8=3^{32}\end{cases}}\)

333 > 332 => 2711 > 818

b) \(\hept{\begin{cases}2^{225}=\left(2^3\right)^{75}=8^{75}\\3^{150}=\left(3^2\right)^{75}=9^{75}\end{cases}}\)

875 < 975 => 2225 < 3150

c) \(\hept{\begin{cases}2^{500}=\left(2^5\right)^{100}=32^{100}\\5^{200}=\left(5^2\right)^{100}=25^{100}\end{cases}}\)

32100 > 25100 => 2500 > 5200

d) \(\hept{\begin{cases}625^5=\left(5^4\right)^5=5^{20}\\125^7=\left(5^3\right)^7=5^{21}\end{cases}}\)

520 < 521 => 6255 < 1257

e) \(\hept{\begin{cases}5^{100}=\left(5^4\right)^{25}=625^{25}\\8^{75}=\left(8^3\right)^{25}=512^{25}\end{cases}}\)

62525 > 51225 => 5100 > 875

f) \(2^{16}=2^3\cdot2^{13}=8\cdot2^{13}\)

7 < 8 => 7.213 < 8.213 => 7.213 < 216

g) Ta có \(\frac{27^{50}}{240^{30}}=\frac{\left(3^3\right)^{50}}{3^{30}\cdot80^{30}}=\frac{3^{150}}{3^{30}\cdot80^{30}}=\frac{3^{120}}{80^{30}}=\frac{\left(3^4\right)^{30}}{80^{30}}=\frac{81^{30}}{80^{30}}\)

Vì 8130 > 8030 => 8130/8030 > 1 => 2750/24030 > 1 => 2750 > 24030

h) Ta có \(\hept{\begin{cases}63^9< 64^9=\left(2^6\right)^9=2^{54}\left(1\right)\\16^{14}=\left(2^4\right)^{14}=2^{56}< 17^{14}\left(2\right)\end{cases}}\)

Từ (1) và (2) => 639 < 254 < 256 < 1714

=> 639 < 1714

20 tháng 9 2017

a)27^11=(3^3)^11=3^33

81^8=(3^4)8=3^32

vì 3^33>3^32 nên 27^11>81^8

b)ko biết làm chỉ biết 3^150>2^225

c)27^50=27^5x10=(27^5)^10=14348907^10

240^30=240^3x10=(240^3)^10=13824000^10

suy ra 27^50>240^30

22 tháng 2 2018

a) Ta có: \(27^{11}=\left(3^3\right)^{^{11}}=3^{3.11}=3^{33}\)

\(81^8=\left(3^4\right)^{^8}=3^{4.8}=3^{32}\)

Vì \(3^{33}>3^{32}\)

nên \(27^{11}>81^8\)

b) Ta có: \(3^{150}=3^{2.75}=\left(3^2\right)^{^{75}}=9^{75}\)

\(2^{225}=2^{3.75}=\left(2^3\right)^{^{75}}=8^{75}\)

vì \(9^{75}>8^{75}\)

nên \(3^{150}>2^{225}\)

c) Ta có:

\(\frac{27^{50}}{240^{30}}=\frac{27^{30}.27^{20}}{240^{30}}=\frac{3^{30}.3^{30}.3^{30}.3^{20}.3^{20}.2^{20}}{3^{30}.80^{30}}\)

\(=\frac{3^{120}}{80^{30}}=\frac{\left(3^4\right)^{^{30}}}{80^{30}}=\frac{81^{30}}{80^{30}}\)

Vì \(\frac{81^{30}}{80^{30}}>1\)\(\Rightarrow\frac{27^{50}}{240^{30}}>1\)\(\Rightarrow27^{50}>240^{30}\)

8 tháng 12 2016

\(a.\)

\(625^{17}=\left(5^4\right)^{17}=5^{68}\)

\(125^{19}=\left(5^3\right)^{19}=5^{57}\)

\(5^{68}>5^{57}\Rightarrow625^{17}>125^{19}\)

10 tháng 7 2016

a. 3111 < 3211 = (25)11 = 255

1714 > 1614 = (24)14 = 256

Mà 255 < 256

=> 3111 < 255 < 256 < 1714

Vậy 3111 < 1714.

b. 3500 = (35)100 = 243100

7200 = (72)100 = 49100

Mà 243100 > 49100

Vậy 3500 > 7200

c. 85 = (23)5 = 215 = 2.214

3.47 = 3.(22)7 = 3.214

Mà 2 < 3 => 2.214 < 3.214

Vậy 85 < 3.47.

10 tháng 7 2016

a) Ta có: \(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\)

             \(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\)

Vì 255<256 => \(31^{11}< 2^{55}< 2^{56}< 17^{14}\)nên  3111<1714

b) Ta có: \(3^{500}=\left(3^5\right)^{100}=243^{100}\)

              \(7^{200}=\left(7^2\right)^{100}=49^{100}\)

Vì \(243^{100}>49^{100}\)nên 3500>7200

c) Ta có: \(8^5=\left(2^3\right)^5=2^{15}=2.2^{14}\)

              \(3.4^7=3.\left(2^2\right)^7=3.2^{14}\)

Vì 2<3 => 2.214<3.214 =>85<3.47

27 tháng 5 2018

a) \(A=2^{24}=\left(2^3\right)^8=8^8.\)(1)

\(B=3^{16}=\left(3^2\right)^8=9^8\)(2)

Từ (1) và (2) \(\Rightarrow A< B\)

Vậy \(A< B.\)

b) \(B=\left(0,3\right)^{30}=\left(0,3^2\right)^{15}=0,09^{15}\)(1)

\(A=\left(0,1\right)^{15}\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

c) \(A=\left(\frac{-1}{4}\right)^8=\left(\frac{1}{4}\right)^8=\left[\left(\frac{1}{2}\right)^2\right]^8=\left(\frac{1}{2}\right)^{16}\)(1)

\(B=\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{2}\right)^3\right]^5=\left(\frac{1}{2}\right)^{15}\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

d) \(A=102^7=102^6.102\)(1)

\(B=9^{13}=9^{12}.9=\left(9^2\right)^6.9=81^6.9\)(2)'

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

e) \(8A=8\frac{8^{18}+1}{8^{19}+1}=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)(1)

\(8B=8\frac{8^{23}+1}{8^{24+1}}=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)(2)

Từ (1) và (2) \(\Rightarrow8A>8B\Rightarrow A>B\)

Vậy \(A>B.\)

f) \(A=\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^4}{1+5+5^2+5^3}=\frac{625}{156}>\frac{468}{156}=3.\)(1)

\(B=\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^4}{1+3+3^2+3^3}=\frac{81}{40}< \frac{120}{40}=3.\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

27 tháng 5 2018

a, ta có A=2^24=64^4

             B=3^16=81^4

Vì 64^4<81^4

Vậy 2^24<3^36

b, ta có A=0,1^15

             B=0,3^30=0,09^15

Vì 0,1^15< 0,09^15

Vậy 0,1^15<0,3^30

6 tháng 7 2017

Ta có : 333^444=(3.111)^444=3^444.111^444

444^333=(4.111)^333=4^333.111^333

Ta lại có : 3^444=(3^4)^111=81^111

4^333=(4^3)^111=64^111

vì 3^444>4^333

mặt khác 111^333<111^444

suy ra 4^333.111^333<3^444.111^444    

                                  vậy 333^444>444^333

5 tháng 8 2018

a) \(2^{24}=2^{3.8}=8^8\)      \(3^{16}=3^{2.8}=9^8\)

Do \(8^8< 9^8\)=>   \(2^{24}< 3^{16}\)

b)  \(3^{200}=3^{2.100}=9^{100}\);      \(2^{300}=2^{3.100}=8^{100}\)

Do  \(9^{100}>8^{100}\)=>  \(3^{200}>2^{300}\)

c)  \(7^{20}=7^{4.5}=2401^5>71^5\)

Vậy  \(7^{20}>71^5\)

d)  \(\left(-2\right)^{30}=2^{30}=2^{3.10}=8^{10}\);      \(\left(-3\right)^{20}=3^{20}=3^{2.10}=9^{10}\)

Do  \(8^{10}< 9^{10}\)nên   \(\left(-2\right)^{30}< \left(-3\right)^{20}\)

e) \(\left(-5\right)^9< 0\);   \(\left(-2\right)^{18}=2^{18}>0\)

Vậy  \(\left(-5\right)^9< \left(-2\right)^{18}\)