Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(27^5=\left(3^3\right)^5=3^{15};32^3=\left(2^5\right)^3=2^{15}\)
Mà \(3^{15}>2^{15}\)
Nên \(27^5>32^3\)
a)
354=(36)9=7299
281=(39)9=196839
Vì 196839>7299
=>354<281
còn lại tự làm
Trả lời
(2+3)4.42= 54.42= 625.16=10000
52.22.4= 25.4.4=400
Học tốt. k mik nha
Làm không biết đúng không nha :D
\(2^{3^{2^3}}=\left(\left(2^3\right)^2\right)^3=\left(8^2\right)^3=8^6\)
\(3^{2^{3^2}}=\left(\left(3^2\right)^3\right)^2=\left(9^3\right)^2=9^6\)
\(\Rightarrow\)
1,
\(A=2^0+2^1+2^2+..+2^{2006}\)
\(=1+2+2^2+...+2^{2016}\)
\(2A=2+2^2+2^3+..+2^{2007}\)
\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)
\(A=2^{2017}-1\)
\(B=1+3+3^2+..+3^{100}\)
\(3B=3+3^2+3^3+..+3^{101}\)
\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)
\(2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{100}-1}{2}\)
\(D=1+5+5^2+...+5^{2000}\)
\(5D=5+5^2+5^3+...+5^{2001}\)
\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)
\(4D=5^{2001}-1\)
\(D=\frac{5^{2001}-1}{4}\)
Ta có:
\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=\left(2^3\right)^{2187}=8^{2187}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Vì: 8 > 3 và 2187 > 512
\(\Rightarrow8^{2187}>3^{512}\)
\(\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)
Vậy: \(2^{3^{2^3}}>3^{2^{3^2}}\)
Vì 2 < 3 nên \(2^{2^2}\)< \(3^{2^2}\)
Dễ quá
Hiện tại mình bị mất ních nên các bạn ủng hộ nick này nhiều nha
\(2^{2^2}\)và \(3^{2^2}\)
Vì 2 < 3
Nên \(2^{2^2}< 3^{2^2}\)
........