K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2021

`A=(2-1)(2+1)(2^2+1)...(2^16+1)`

`=(2^2-1)(2^2+1)....(2^16+1)`

`=(2^4-1)....(2^16+1)`

`=2^32-1<2^32`

`=>A<B`

b) Ta có: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2+1\right)\left(2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(=2^{64}-1-2^{64}=-1\)

22 tháng 6 2016

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(=>a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)=\left(ax\right)^2+2axby+\left(by\right)^2\)

\(=>a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-2axby-b^2y^2=0\)

\(=>a^2y^2+b^2x^2-2axby=0=>\left(ay-bx\right)^2=0\)

=>ax-by=0=>ax=by

Vậy .....................

 

22 tháng 6 2016

2) b)

Xét hiệu :

\(100^2+103^2+105^2+94^2-\left(101^2+98^2+96^2+107^2\right)\)

\(=100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2\)

\(=\left(100^2-98^2\right)+\left(103^2-101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)\)

\(=\left(100-98\right)\left(100+98\right)+\left(103-101\right)\left(103+1\right)-\left(107-105\right)\left(107+105\right)\)\(-\left(96-94\right)\left(96+94\right)\)

\(=2.198+2.204-2.212-2.190=2\left(198+204-212-190\right)=2.0=0\)

Vậy 1002+1032+1052+942=1012+982+962+1072

21 tháng 7 2018

a) \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{64}-1\right)\)

\(=\dfrac{3^{64}-1}{2}\)

b) \(\left(a+b+c\right)2+\left(a-b-c\right)2+\left(b-c-a\right)2+\left(c-a-b\right)2\)

\(=2\left[\left(a+b+c\right)+\left(a-b-c\right)+\left(b-c-a\right)+\left(c-a-b\right)\right]\)

\(=2\left(a+b+c+a-b-c+b-c-a+c-a-b\right)\)

\(=2.0\)

\(=0\)

c)\(\left(a+b+c+d\right)2+\left(a+b-c-d\right)2+\left(a+c-b-d\right)2+\left(a+d-b-c\right)2\)

\(=2\left(a+b+c+d+a+b-c-d+a+c-b-d+a+d-b-c\right)\)

\(=2.4a\)

\(=8a\)

11 tháng 8 2019

12

= \(\frac{24}{2}\)

= \(\frac{1}{2}\left(25-1\right)\)

= \(\frac{1}{2}\left(5^2-1\right)\)

Chép đề sai kìa

a: \(A-B=\dfrac{\left(x-y\right)\left(x^2+y^2\right)-\left(x^2-y^2\right)\left(x+y\right)}{\left(x+y\right)\left(x^2+y^2\right)}\)

\(=\dfrac{x^3+xy^2-x^2y-y^3-x^3-x^2y+xy^2+y^3}{\left(x+y\right)\left(x^2+y^2\right)}\)

\(=\dfrac{-2x^2y+2xy^2}{\left(x+y\right)\left(x^2+y^2\right)}=\dfrac{-2xy\left(x-y\right)}{\left(x+y\right)\left(x^2+y^2\right)}>0\)

=>A>B

b: \(A=\dfrac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{3^{32}-1}{2}< 3^{32}-1=B\)