Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=.............................................................\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=B-1\)
Suy ra A < B
b) \(A=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1=B-1\)
Suy ra A < B
Phần a bạn nhân thêm ở A là (2-1) là ra hằng đẳng thức, cứ thế mà triển. (Kết quả: A<B)
Phần b: phân tích A, ta có:
2015.2017= (2016-1).(2016+1)= 2016^2 -1 <2016^2
Suy ra: A<B
TÌM TRƯỚC KHI HỎI
a)Ta có: \(2015=2016-1;2017=2016+1\)
\(\Rightarrow A=2015\cdot2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1< 2016^2=B\)
b)Ta có:
\(C=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1< 2^{32}=D\)
a)Ta có:A=2015.2017=(2016-1)(2016+1)=20162-1<B=20162
b)Ta có:C=(2+1)(22+1)(24+1)(28+1)(216+1)
=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)
=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1
=>C<D=232
Ax(2-1)=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=(2^4-1)(2^4+1)(2^8+1)(2^16+1)=(2^8-1)(2^8+1)(2^16+1)=(2^16-1)(2^16+1)=2^32-1
Vậy A=B
Áp dụng hằng đẵng thức A^2-B^2 đó bạn
Có
a) A= 2015. 2017 = ( 2016 - 1)(2016 + 1)
= 20162 - 1 < 20162 = B
=> A < B ( 20162 - 1 < 20162 )
b) C = (2+1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
= ( 2 - 1)(2+1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
= (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
= ( 24 - 1)(24 + 1)(28 + 1)(216 + 1)
= (28 -1)(28 + 1)(216 + 1)
= ( 216 - 1)( 216 + 1)
= 232 - 1 > 223 = D
Vậy C > D ( 232 - 1 < 223 )
a)\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50\)
\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52\)
Vì 52 > 50 nên B > A
A = (2 - 1)(2 + 1)(2^2 + 1 )(2^4 + 1 ) (2^8 + 1)(2^16 + 1) ( nhân vói 2 - 1 = 1 Gía không thay dổi)
A = ( 2 ^2 - 1 )(2^2 + 1 )(2^4 + 1 )(2^8 + 1 )(2^16 + 1 )
A = ( 2^4 - 1 )(2^4 + 1)(2^8 + 1)(2^16 + 1)
A = (2^8 - 1)(2^8 + 1)(2^16 + 1)
A = (2^16 - 1)(2^16 + 1 )
A = 2^32 - 1 <2^32 = B
VẬy A < B
a ) \(A=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1\)
Do \(2016^2>2016^2-1\)
\(\Rightarrow B>A\)
b ) \(C=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1< 2^{32}=D\)
Vậy \(C< D\)
so sánh :a)A=2015.2017 va B=20162
Ta có: A = 2015.2017 = (2016-1)(2016+1)
= 20162-1<20162
=> A < B