K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

A = 1/42 + 1/62 + 1/82 + ... + 1/(2n)2

A = 1/22.(1/22 + 1/32 + 1/42 + ... + n2)

A < 1/22.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/(n-1).n

A < 1/4.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... +1/n-1 - 1/n)

A < 1/4.(1 - 1/n) < 1/4.1

A < 1/4

17 tháng 1 2020

a)   Ta có: 

+) \(\frac{10^8}{10^7}\)-1=  108-7-1=10-1=9 (1)

+) \(\frac{10^7}{10^6}\)-1=  107-6-1=10-1=9 (2)

Từ (1) và (2) => \(\frac{10^8}{10^7}\)-1=\(\frac{10^7}{10^6}\)-1

Vậy..

7 tháng 4 2023

Ta có :22A=1+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{n^2}\)

            22A-A=1-\(\dfrac{1}{\left(2n\right)^2}\)

            3A=\(\dfrac{\left(2n\right)^2-1}{\left(2n\right)^2}\) <\(\dfrac{n^2}{\left(2n\right)^2}\)=\(\dfrac{1}{2}\)

          3A<\(\dfrac{1}{2}\) suy ra A<\(\dfrac{1}{2}\)

6 tháng 4 2023

A   = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+\(\dfrac{1}{\left(2.n\right)^2}\)

A  =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{\left(2.2\right)^2}\)\(\dfrac{1}{\left(2.3\right)^2}\) +....+\(\dfrac{1}{\left(2.n\right)^2}\)

A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^2.2^2}\) + \(\dfrac{1}{2^2.3^2}\)+......+ \(\dfrac{1}{2^2.n^2}\)

A = \(\dfrac{1}{2^2}\) \(\times\) ( 1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.......+ \(\dfrac{1}{n^2}\))

22 \(\times\) A = 1 + \(\dfrac{1}{2^2}\)\(\dfrac{1}{3^2}\)+......+\(\dfrac{1}{n^2}\)

     4A =  1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) +......+ \(\dfrac{1}{n^2}\)

     4A = 1 + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ...+\(\dfrac{1}{n.n}\)

       1   = 1

     \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)

      \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)

     ...................

 \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right).n}\)

Cộng vế với vế ta có: 

4A = 1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+....+\(\dfrac{1}{n.n}\) <1+ \(\dfrac{1}{1.2}\)\(\dfrac{1}{2.3}\)+ ......+ \(\dfrac{1}{\left(n-1\right).n}\)

4A < 1+ \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+....+\(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\) = 2 - \(\dfrac{1}{n}\)

A < ( 2 - \(\dfrac{1}{n}\)): 4 

A < 2 : 4 - \(\dfrac{1}{n}\) : 4

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\)

Vậy A < \(\dfrac{1}{2}\) 

 

 

28 tháng 8 2020

a>b vì ...

28 tháng 8 2020

Bài làm:

Ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}\)

\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)

\(A=\left[\left(1+\frac{1}{3}+...+\frac{1}{9}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]-\left[\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)=B\)

Vậy A = B

12 tháng 5 2021

Tính nhanh 5/8+5/24+5/48+......+5/9800

3 tháng 4 2024

11 tháng 5 2021

có:1/4+1/5+1/6+1/7+...+1/9≤nhỏ hơn 1/6.6=1

1/10+1/11+...+1/15 nhỏ hơn1/5.5=1

⇒1/4+1/5+...+1/15nhỏ hơn1+1=2(đpcm)

ta có

\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}< \dfrac{1}{4}.4\)

 

\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}< 1\)

và:

\(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{8}.8\)

 

\(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< 1\)

 

\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{15}< 1+1=2\)