K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2020

\(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right)...\left(\frac{1}{200}-1\right)\)

 \(=\frac{-1}{2}.\frac{-2}{3}...\frac{-199}{200}=\frac{\left(-1\right).\left(-2\right)...\left(-199\right)}{2.3...200}=\frac{-1}{200}\)

Mà \(\frac{-1}{200}>\frac{-1}{199}\)nên \(A>\frac{-1}{199}\)

13 tháng 12 2018

a, \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{200}-1\right)\)

\(-A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{200}\right)\)

\(-A=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{199}{200}\)

\(-A=\frac{1}{200}\)

\(A=\frac{-1}{200}>\frac{-1}{199}\)

7 tháng 12 2019

Ta có: \(A=1+3^1+3^2+3^3+...+3^{199}+3^{200}\)

\(\Rightarrow3A=3^1+3^2+3^3+3^4+...+3^{201}\)

\(\Rightarrow3A-A=\left(3^1+3^2+3^3+3^4+...+3^{201}\right)-\left(1+3^1+3^2+3^3+...+3^{200}\right)\)

\(\Rightarrow2A=3^{201}-1\)

\(\Rightarrow A=\frac{3^{201}-1}{2}< 3^{201}-1< 3^{201}=B\)

Vậy A < B

7 tháng 12 2019

Ta có : A = 1 + 3 + 3+ ... + 3200

\(\Leftrightarrow\)2A = 3 + 3+ 33 + ... + 3201

Lấy 2A - A = ( 3 + 32 + 33 + ... + 3201 ) - ( 1 + 3 + 3+ ... + 3200 )

\(\Rightarrow\)A = 3201 - 1

Ta thấy : 3201 - 1 < 3201

\(\Leftrightarrow\)A < B

Bài 1:

a: Sửa đề: 1/3^200

1/2^300=(1/8)^100

1/3^200=(1/9)^100

mà 1/8>1/9

nên 1/2^300>1/3^200

b: 1/5^199>1/5^200=1/25^100

1/3^300=1/27^100

mà 25^100<27^100

nên 1/5^199>1/3^300

14 tháng 1 2019

<or>or=<or>=

15 tháng 1 2019

Sửa đề : \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+......+\frac{1}{2^{199}}\)

\(\Rightarrow2A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{198}}\)

\(\Rightarrow2A-A=A=\frac{1}{2}-\frac{1}{2^{199}}< \frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)

Vậy \(A< \frac{3}{4}\)

23 tháng 8 2023

1) \(5^{199}< 5^{200}=25^{100}\)

\(3^{300}=27^{100}>25^{100}\)

\(\Rightarrow3^{300}>5^{199}\)

\(\Rightarrow\dfrac{1}{3^{300}}< \dfrac{1}{5^{199}}\)

2)  a) \(107^{50}=\left(107^2\right)^{25}=11449^{25}\)

\(73^{75}=\left(73^3\right)^{25}=389017^{25}>11449^{25}\)

\(\Rightarrow107^{50}< 73^{75}\)

b) \(54^4< 5^{12}< 21^{12}\Rightarrow54^4< 21^{12}\)

23 tháng 8 2023

Giúp mình với

17 tháng 1 2016

bấm vào chữ Đúng 0 sẽ hiện ra kết quả 

olm-logo.png