Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)
Ta có:
\(A=\frac{2000^{2014}}{2000^{2015}-1}=\frac{2000^{2014}\cdot2000}{\left(2000^{2015}-1\right)\cdot2000}=\frac{2000^{2015}}{2000^{2016}-2000}\)
Vì có cùng tử số và 20002016-2000 < 20002016-1 nên \(\frac{2000^{2015}}{2000^{2016}-2000}>\frac{2000^{2015}}{2000^{2016}-1}\)
nên A>B
Xét A trước ta có
2000A=2000.2000^2014/2000^2015-1
2000A=2000^2015-1+1999/2000^2015-1
2000A=1+1999/2000^2015-1
2000B=2000^2015.2000/2000^2016-1
2000B=2000^2016-1+1999/2000^2016-1
2000B=1+1999/2000^2016-1
Ta thấy 2000A>2000B
suy ra A>B
mik có cách này
nếu bạn hay quyên thế thì ghi những bài toán đáng nhớ vào 1 quyển sổ
lúc nào quyên thì dở ra
hiệu quả hơn đó !~
Ta có công thức :
\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{10^{2016}+1}{10^{2015}+1}>\frac{10^{2016}+1+9}{10^{2015}+1+9}=\frac{10^{2016}+10}{10^{2015}+10}=\frac{10\left(10^{2015}+1\right)}{10\left(10^{2014}+1\right)}=\frac{10^{2015}+1}{10^{2014}+1}=A\)
\(\Rightarrow\)\(B>A\) hay \(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Bây giờ mình mới thấy dễ:
Ta có: \(A=\frac{2000^{2014}}{2000^{2015}-1}=\frac{2000^{2014}\times2000}{\left(2000^{2015}-1\right)\times2000}=\frac{2000^{2015}}{2000^{2016}-2000}\)
Vì có cùng tử số và 20002016-2000 < 20002016-1 nên \(\frac{2000^{2015}}{2000^{2016}-2000}\)> \(\frac{2000^{2015}}{2000^{2016}-1}\)
nên A>B
a)Ta áp dụng tính chất sau:
Nếu a<b=>a/b<(a+k)/(b+k) (k thuộc N*)
Vì 1013+1<1014+1=>B=1013+1/1014+1<1013+1+9/1014+1+9
=>B<1013+10/1014+10
=>B<10.(1012+1)/10.(1013+1)
=>B<1012+1/1013+1=A
=>B<A
b)Ta áp dụng tính chất sau:
Nếu a>b=>a/b>(a+k)/(b+k) (k thuộc N*)
Vì 102015+1>102014+1=>B=102015+1/102014+1>102015+1+99/102014+1+99
=>B>102015+100/102014+100
=>B>100.(102013+1)/100.(102012+1)
=>B>102013+1/102012+1=A
=>B>A
Mình làm cho câu đầu tiên thôi, câu thứ hai cũng tương tự nha:
Ta có:
A.10 = \(\frac{10^{12}+10}{10^{12}+1}\) B.10 = \(\frac{10^{14}+10}{10^{14}+1}\)
=>A.10 = \(\frac{10^{12}+1+9}{10^{12}+1}\) =>B.10 = \(\frac{10^{14}+1+9}{10^{14}+1}\)
=>A.10 = 1 + \(\frac{9}{10^{12}+1}\) =>B.10 = 1 + \(\frac{9}{10^{14}+1}\)
=>A.10 > B.10
=>A > B
Vậy A > B
b, 2000A = \(\frac{2000\left(2000^{2015}+1\right)}{2000^{2016}+1}\)
= \(\frac{2000^{2016}+2000}{2000^{2016}+1}\)
= \(\frac{\left(2000^{2016}+1\right)+1999}{2000^{2016}+1}\)
= \(\frac{2000^{2016}+1}{2000^{2016}+1}\) + \(\frac{1999}{2000^{2016}+1}\)
= 1 + \(\frac{1999}{2000^{2016}+1}\)
2000B = \(\frac{2000\left(2000^{2014}+1\right)}{2000^{2015}+1}\)
= \(\frac{2000^{2015}+2000}{2000^{2015}+1}\)
= \(\frac{\left(2000^{2015}+1\right)+1999}{2000^{2015}+1}\)
= \(\frac{2000^{2015}+1}{2000^{2015}+1}\) + \(\frac{1999}{2000^{2015}+1}\)
= 1 + \(\frac{1999}{2000^{2015}+1}\)
So sanh
câu b tiếp
So sánh 2000A với 2000B
Vì \(\frac{1999}{2000^{2016}+1}\) < \(\frac{1999}{2000^{2015}+1}\)
→ 2000A< 2000B
→ A<B