Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)
\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)
mà \(10^7-8< 10^8-7\)
nên A>B
c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)
mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)
nên A<B
Vì 18/91 < 18/90 =1/5
23/114>23115=1/5
vậy 18/91<1/5<23/114
suy ra 18/91<23/114
vì 21/52=210/520
Mà 210/520=1-310/520
213/523=1-310/523
310/520>310/523
vậy 210/520<213/523
suy ra 21/52<213/523
a) (1/7.x-2/7).(-1/5.x-2/5)=0
=> 1/7.x-2/7=0hoặc-1/5.x-2/5=0
*1/7.x-2/7=0
1/7.x=0+2/7
1/7.x=2/7
x=2/7:1/7
x=2
b)1/6.x+1/10.x-4/5.x+1=0
(1/6+1/10-4/5).x+1=0
(1/6+1/10-4/5).x=0-1
(1/6+1/10-4/5).x=-1
(-8/15).x=-1
x=-1:(-8/15) =15/8
\(a.\dfrac{3}{5}-\dfrac{-7}{10}-\dfrac{13}{-20}=\dfrac{12}{20}-\dfrac{-14}{20}-\dfrac{-13}{20}=\dfrac{12-\left(-14\right)-\left(-13\right)}{20}=\dfrac{39}{20}\)
\(b.\dfrac{3}{4}+\dfrac{-1}{3}-\dfrac{5}{18}=\dfrac{3}{4}+\left(\dfrac{-6}{18}-\dfrac{5}{18}\right)=\dfrac{3}{4}+\dfrac{-11}{18}=\dfrac{27}{36}-\dfrac{-22}{36}=\dfrac{49}{36}\)
\(c.\dfrac{3}{13}-\dfrac{5}{-8}+\dfrac{-1}{2}=\dfrac{3}{13}-\left(\dfrac{5}{-8}+\dfrac{-4}{8}\right)=\dfrac{3}{13}-\dfrac{1}{8}=\dfrac{24}{104}-\dfrac{13}{104}=\dfrac{11}{104}\)
\(d.\dfrac{1}{2}+\dfrac{1}{-3}=\dfrac{3}{6}+\dfrac{-2}{6}=\dfrac{1}{6}\)
\(a,\dfrac{3}{5}-\dfrac{-7}{10}-\dfrac{13}{-20}\)
\(=\dfrac{12}{20}+\dfrac{14}{20}+\dfrac{13}{20}\)
\(=\dfrac{12+14+13}{20}\)
\(=\dfrac{39}{20}\)
\(b,\dfrac{3}{4}+\dfrac{-1}{3}-\dfrac{5}{18}\)
\(=\dfrac{27}{36}+\dfrac{-12}{36}-\dfrac{10}{36}\)
\(=\dfrac{27+\left(-12\right)-10}{36}\)
\(=\dfrac{5}{36}\)
\(c,\dfrac{3}{13}-\dfrac{5}{-8}+\dfrac{-1}{2}\)
\(=\dfrac{24}{104}-\dfrac{-65}{104}+\dfrac{-52}{104}\)
\(=\dfrac{24-\left(-65\right)+\left(-52\right)}{104}\)
\(=\dfrac{37}{104}\)
\(d,\dfrac{1}{2}+\dfrac{1}{-3}\)
\(=\dfrac{3}{6}+\dfrac{-2}{6}\)
\(=\dfrac{3+\left(-2\right)}{6}\)
\(=\dfrac{1}{6}\)
a)\(\dfrac{3}{10}\)-x=\(\dfrac{25}{30}\)-\(\dfrac{4}{30}\)
\(\dfrac{3}{10}-x=\dfrac{7}{10}\)
x = \(\dfrac{3}{10}-\dfrac{7}{10}\)
x=\(\dfrac{-4}{10}\)
b)\(\dfrac{-5}{8}+x=\dfrac{4}{9}-\dfrac{63}{9}\)
\(\dfrac{-5}{9}+x=\dfrac{-59}{9}\)
\(x=\dfrac{-59}{9}-\dfrac{-5}{9}\)
\(x=\dfrac{-64}{9}\)
c)=>2.18=(x-3).(x-3)
=>36=(x-3)\(^2\)
=>6\(^2\)=(x-3)\(^2\)
6= x-3
x=6+3=9
d, Vì B=10^1993+1/10^1992+1 > 1 =>10^1993+1/10^1992+1>10^1993+1+9/10^1992+1+9 = 10^1993+10/10^1992+10= 10. (10^1992+1)/10. (10^1991+1) = 10^1992+1/10^1991+1=A Vậy A=B
cau d B>1 ta co tinh chat (\(\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ) B> \(\dfrac{10^{1993}+1+9}{10^{1992}+1+9}\)\(=\dfrac{10^{1993}+10}{10^{1992}+10}\)=\(\dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1992}+1}{10^{1991}+1}\)=A
Suy ra B>A(chuc ban hoc goi nhe)