Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)
Vậy A<B
A = 2018^2 - 2016^2
A = (2018 - 2016)(2018 + 2016)
A = 2.4034
B = 2019^2 - 2017^2
B = (2019 - 2017)(2019 + 2017)
B = 2.4036
=> A < B
ggbgbgkbgbgkbokgbgobgkbkogokbgkobkogbkbgb,mb.gnl'g
câu trả lời ở bên dưới
gf'gbf
fgjfb
b
bk
gkbgobpgbogojbgmkh
gg
g
gg
g
g
g
g
g
g
gg
g
g
g
g
g
g
g
g
gg
g
g
g
g
g
g
fgfbgf
nơgnpgpngpnpgnpgpngpnmgknfbbngmnlkgnlmgngnlmbklfgbpfoigfg[e[gr
bố mày đéo bt
Ta thấy \(A=\frac{2018-2017}{2018+2017}=\frac{2018^2-2017^2}{\left(2018+2017\right)^2}=\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}\)
Mà \(2018^2+2.2018.2017+2017^2>2018^2+2017^2\)
\(\Rightarrow\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}< \frac{2018^2-2017^2}{2018^2+2017^2}\)
Vậy A<B
\(2018^2+2016^2\)
\(=\left(2017+1\right)^2+\left(2017-1\right)^2\)
\(=2017^2+2\cdot2017+1+2017^2-2\cdot2017+1\)
\(=2\cdot2017^2+2\)
\(>B\)
<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)
a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3
A= 12017 + 02018 + (-1)2019 = 0
\(A=\left(2018-2016\right)\left(2018+2016\right)=2.4034\)
\(B=\left(2019-2017\right)\left(2019+2017\right)=2.4036\)
Ta thấy 4034 < 4036 nên A < B.
\(A=2018^2-2016^2=\left(2018+2016\right)\left(2018-2016\right)=4034.2\)
\(B=2019^2-2017^2=\left(2019+2017\right)\left(2019-2017\right)=4036.2\)
Vì 4036 > 4034 nên 4036 . 2 > 4034 . 2 nên B > A