Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(A=\frac{10^{2014}+2016}{10^{2015}+2016}\Rightarrow10A=\frac{10^{2015}+20160}{10^{2015}+2016}=\frac{10^{2015}+2016+18144}{10^{2015}+2016}=1+\frac{18144}{10^{2015}+2016}\)
Xét \(B=\frac{ 10^{2015}+2016}{10^{2016}+2016}\Rightarrow10B=\frac{10^{2016}+20160}{10^{2016}+2016}=\frac{10^{2016}+2016+18144}{10^{2016}+2016}=1+\frac{18144}{10^{2016}+2016}\)
Có \(\frac{18144}{10^{2015}+2016}>\frac{18144}{10^{2016}+2016}\)
\(\Rightarrow10A>10B\Leftrightarrow A>B\)
Ta có: \(10A=\dfrac{10^{2016}-10}{10^{2016}-1}=1-\dfrac{9}{10^{2016}-1}\)
\(10B=\dfrac{10^{2015}+10}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)
Vì \(\dfrac{9}{10^{2016}-1}< \dfrac{9}{10^{2015}+1}\Rightarrow1-\dfrac{9}{10^{2016}-1}< 1+\dfrac{9}{10^{2015}+1}\)
\(\Rightarrow10A< 10B\Rightarrow A< B\)
Vậy A < B
Ta có:
\(10A=\frac{10^{2015}+20200}{10^{2015}+2020}=1+\frac{18180}{10^{2015}+2020}\)
\(10B=\frac{10^{2016}+20200}{10^{2016}+2020}=1+\frac{18180}{10^{2016}+2020}\)
Vì \(10^{2016}+2020>2^{2015}+2020\)
=> \(\frac{18180}{10^{2016}+2020}< \frac{18180}{10^{2015}+2020}\)
=> \(1+\frac{18180}{10^{2016}+2020}< 1+\frac{18180}{10^{2015}+2020}\)
=> 10B < 10A
=> B<A
\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)
\(\dfrac{2013}{2013+2014}< \dfrac{2013}{2013+2013}=\dfrac{1}{2}\)
Tương tự cộng theo vế suy ra đpcm
\(10A=\dfrac{10^{2015}+2016+9\cdot2016}{10^{2015}+2016}=1+\dfrac{18144}{10^{2015}+2016}\)
\(10B=\dfrac{10^{2016}+9+18144}{10^{2016}+2016}=1+\dfrac{18144}{10^{2016}+2016}\)
mà \(\dfrac{18144}{10^{2015}+2016}>\dfrac{18144}{10^{2016}+2016}\)
nên A>B