Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(11M=\frac{11^{2016}+11}{11^{2016}+1}=1+\frac{10}{11^{2016}+1}\)
\(11N=\frac{11^{2017}+11}{11^{2017}+1}=1+\frac{10}{11^{2017}+1}\)
Vi \(\frac{10}{11^{2016}+1}>\frac{10}{11^{2017}+1}\) nen 11M > 11N => M > N
\(A-1=\frac{10^{2016}+2}{10^{2016}-1}=\frac{3}{10^{2016}-1}\)
\(B-1=\frac{10^{2016}}{10^{2016}-3}-1=\frac{3}{10^{2016}-3}\)
Vì \(1< 3\Rightarrow10^{2016}-1>10^{2016}-3\Rightarrow\frac{3}{10^{2016}-1}< \frac{3}{10^{2016}-3}\Rightarrow A-1< B-1\Rightarrow A< B\Rightarrow\)
\(\frac{10^{2016}+2}{10^{2016}-1}=\frac{10^{2016}-1+3}{10^{2016}-1}=1+\frac{3}{10^{2016}-1}\)
\(\frac{10^{2016}}{10^{2016}-3}=\frac{10^{2016}-3+3}{10^{2016}-3}=1+\frac{3}{10^{2016}-3}\)
vì\(1< 3\Rightarrow10^{2016}-1>10^{2016}-3\Rightarrow\frac{3}{10^{2016-1}}< \frac{3}{10^{2016}-3}\Rightarrow A< B\)
Ta có(202015+112015)2016
=(202015+112015)2015.(202015+112015)>(202015+112015)2015.202015
=(20.202015+20.112015)2015>(202016+112016)2015
CHÚC TÔI HỌC GIỎI
Trả lời
Bạn xem tại link:
Câu hỏi của Hải Cẩu 6D - Toán lớp 6 - Học toán với OnlineMath
~Hok tốt~
Ta có:2016A=\(\frac{2016\left(2016^{10}+1\right)}{2016^{11}+1}=\frac{2016^{11}+2016}{2016^{11}+1}=\frac{2016^{11}+1+2015}{2016^{11}+1}=1+\frac{2015}{2016^{11}+1}\)
2016B=\(\frac{2016\left(2016^{11}+1\right)}{2016^{12}+1}=\frac{2016^{12}+2016}{2016^{12}+1}=\frac{2016^{12}+1+2015}{2016^{12}+1}=1+\frac{2015}{2016^{12}+1}\)
Vì \(2016^{12}+1>2016^{11}+1\) nên \(\frac{2015}{2016^{12}+1}< \frac{2015}{2016^{11}+1}\)
\(\Rightarrow1+\frac{2015}{2016^{12}+1}< 1+\frac{2015}{2016^{11}+1}\)\(\Rightarrow2016B< 2016A\Rightarrow B< A\)
Ta có :
\(B=\frac{2016^{11}+1}{2016^{12}+1}>\frac{2016^{11}+1+9}{2016^{12}+1+9}=\frac{2016^{11}+10}{2016^{12}+10}=\frac{10\left(2016^{10}+1\right)}{10\left(2016^{11}+1\right)}=\frac{2016^{10}+1}{2016^{11}+1}=A\)
Vậy \(A< B\)