Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Ta có :
\(\frac{13}{14}=1-\frac{1}{14}\)
\(\frac{12}{13}=1-\frac{1}{13}\)
Vì \(\frac{1}{14}< \frac{1}{13}\) \(\Rightarrow\text{ }\frac{13}{14}>\frac{12}{13}\)
b, Bài giải
\(A=\frac{10^{10}+5}{10^{10}-1}=\frac{10^{10}-1+6}{10^{10}-1}=\frac{10^{10}-1}{10^{10}-1}+\frac{6}{10^{10}-1}=1+\frac{6}{10^{10}-1}\)
\(B=\frac{10^{10}+4}{10^{10}-2}=\frac{10^{10}-2+6}{10^{10}-2}=\frac{10^{10}-2}{10^{10}-2}+\frac{6}{10^{10}-2}=1+\frac{6}{10^{10}-2}\)
Vì \(\frac{6}{10^{10}-1}>\frac{6}{10^{10}-2}\) \(\Rightarrow\text{ }\frac{10^{10}+5}{10^{10}-1}>\frac{10^{10}+4}{10^{10}-2}\)
\(\Rightarrow\text{ }A>B\)
Theo đầu bài ta có:
\(\hept{\begin{cases}A=\frac{10^{12}-1}{10^{13}-1}\Rightarrow10A=\frac{10^{13}-10}{10^{13}-1}=\frac{\left(10^{13}-1\right)-9}{10^{13}-1}=1-\frac{9}{10^{13}-1}\\B=\frac{10^{10}+1}{10^{11}+1}\Rightarrow10B=\frac{10^{11}+10}{10^{11}+1}=\frac{\left(10^{11}+1\right)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\end{cases}}\)
Do \(1-\frac{9}{10^{13}-1}< 1< 1+\frac{9}{10^{11}+1}\Rightarrow10A< 10B\Rightarrow A< B\)
Có : 6.2^12 + 2^13 = 2^12 . (6+2) = 2^12 . 8 = 2^12 . 2^3 = 2^15 = (2^3)^5 = 8^5
3^10 = (3^2)^5 = 9^5
Vì 8^5 < 9 ^5 nên 6.2^12 + 2^13 < 3^10
Có 6 . 2^12 + 2^13 = 6 . 2^12 + 2^12 . 2 = 2^12( 6 + 2 ) = 2^12 . 8 = 2^12 . 2^3 = 2^15
Giờ ta so sánh 2^15 với 3^10
2^15 = 8^5
3^10 = 9^5
Dễ thấy 8^5 < 9^5 <=> 6.2^12 + 2^13 < 3^10
\(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(10B=\frac{10\left(10^{12}-1\right)}{10^{13}-1}=\frac{10^{13}-10}{10^{13}-1}=\frac{10^{13}-1-9}{10^{13}-1}=1-\frac{9}{10^{13}-1}\)
Vì \(10^{13}-1>10^{12}-1\Rightarrow\frac{9}{10^{13}-1}< \frac{9}{10^{12}-1}\Rightarrow-\frac{9}{10^{13}-1}>-\frac{9}{10^{12}-1}\)
\(\Rightarrow1-\frac{9}{10^{13}-1}>1-\frac{9}{10^{12}-1}\Rightarrow10B>10A\Rightarrow B>A\)
\(A=\frac{10^{11}-1}{10^{12}-1}\Leftrightarrow10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(B=\frac{10^{12}-1}{10^{13}-1}\Leftrightarrow10B=\frac{10^{13}-10}{10^{13}-1}=\frac{10^{13}-1-9}{10^{13}-1}=1-\frac{9}{10^{13}-1}\)
\(\text{Vì }1-\frac{9}{10^{12}-1}< 1-\frac{9}{10^{13}-1}\Rightarrow10A< 10B\)
\(\Rightarrow A< B\)
\(A=\dfrac{10^{12}+6}{10^{12}-11}\)
\(\Rightarrow A=\dfrac{10^{12}-11+17}{10^{12}-11}\)
\(\Rightarrow A=\dfrac{10^{12}-11}{10^{12}-11}+\dfrac{17}{10^{12}-11}\)
\(\Rightarrow A=1-\dfrac{17}{10^{12}-11}\)
\(B=\dfrac{10^{11}+5}{10^{11}-12}\)
\(\Rightarrow B=\dfrac{10^{11}-12+17}{10^{11}-12}\)
\(\Rightarrow B=\dfrac{10^{11}-12}{10^{11}-12}+\dfrac{17}{10^{11}-12}\)
\(\Rightarrow B=1-\dfrac{17}{10^{11}-12}\)
Vậy ta cần so sánh \(1-\dfrac{17}{10^{12}-11}\) và \(1-\dfrac{17}{10^{11}-12}\)
Ta thấy \(\left(10^{12}-11\right)>\left(10^{11}-12\right)\) và 2 phân số trên cùng tử số 17 nên \(\dfrac{17}{10^{12}-11}< \dfrac{17}{10^{11}-12}\)
Vậy \(1-\dfrac{17}{10^{12}-11}>1-\dfrac{17}{10^{11}-12}\) hay \(A>B\)
a) Có (-11).(-12) = 132
10.(-13)= -130
Mà 132> -130
Suy ra (-11).(-12) > 10.(-13)
b) giống với câu a
\(a)\) Chưa biết -_-
\(b)\) \(12^2-8^2=4^2.3^2-4^2.2^2=4^2\left(3^2-2^2\right)>4^2\)
Vậy \(12^2-8^2>4^2\)
\(c)\) \(7^8+7^9=7^8\left(1+7\right)=7^8.8< 7^8.49=7^8.7^2=7^{10}\)
Vậy \(7^8+7^9< 7^{10}\)
Chúc bạn học tốt ~
a) 13^2 = (10+3)^2 = 10^2 + 3^2 + 2.10.3 > 10^2 + 3^2
b) 12^2 - 8^2 = (8 + 4)^2 - 8^2 = 8^2 + 2.4.8 + 4^2 - 8^2 = 2.4.8 + 4^2 > 4^2
c) 7^10 = 7.7^9 = (6+1).7^9 = 6.7^9 + 7^9 = 6.7^9 + 7.7^8 > 7^8 + 7^9
Lời giải:
Xét tỉ số:
\(\frac{5^{10}+12^{10}}{13^{10}}=(\frac{5}{13})^{10}+(\frac{12}{13})^{10}< (\frac{5}{13})^2+(\frac{12}{13})^2=1\)
$\Rightarrow 5^{10}+12^{10}< 13^{10}$