K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

b) Ta có:

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\frac{\sqrt{1}-\sqrt{2}}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+...+\frac{\sqrt{99}-\sqrt{100}}{-1}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

\(=-\sqrt{1}+\sqrt{100}\)

\(=\left(-1\right)+10\)

\(=9.\)

\(9=9.\)

\(\Rightarrow\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=9\left(đpcm\right).\)

Chúc bạn học tốt!

15 tháng 3

\(\sqrt{17} + \sqrt{26} + 1 \approx 10.222\)\(\sqrt{99} \approx 9.949\), nên ta có:

\(\sqrt{17} + \sqrt{26} + 1 > \sqrt{99}\)

15 tháng 3

ta có: \(\sqrt{17}>\sqrt{16}=4,\sqrt{26}>\sqrt{25}=5\)
\(\sqrt{99}<\sqrt{100}=10\)
nên :\(\sqrt{17}+\sqrt{26}+1>4+5+1=10>\sqrt{99}\)
Vậy : \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

17 tháng 2 2020

a) Ta có : \(x=\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7\)                    (1)

\(y=\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7\)             (2)

Từ (1) và (2) => x = y

b) Ta có : \(x=\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}\)        (1)

\(y=\sqrt{576}-\frac{1}{\sqrt{6}}+1=24-\frac{1}{\sqrt{6}}+1=25-\frac{1}{\sqrt{6}}\) (2)

Vì \(\sqrt{5}< \sqrt{6}\)nên \(\frac{1}{\sqrt{5}}>\frac{1}{\sqrt{6}}\)(3)

(1),(2),(3) => \(x>y\)

17 tháng 2 2020

Mà Mun Già ơi, chỗ mà câu a đó, KL hình như sai rồi, từ (1) và (2) suy ra x<y chứ sao = nhau đc

17 tháng 10 2018

cmr là cái j

4 tháng 4 2021

Lê Thanh Thùy Ngân 

cmr là chứng minh rằng bạn nhé 

13 tháng 10 2018

\(\text{a, Ta có:}\)

\(3\sqrt{7}=\sqrt{3^27}=\sqrt{63}\)

\(9=\sqrt{81}\)

\(\text{Vì}:\sqrt{81}>\sqrt{63}\Rightarrow3\sqrt{7}< 9\)

\(\text{b, Vì}\) \(-\sqrt{3}>-\sqrt{5}\Rightarrow-\sqrt{\sqrt{3}}>-\sqrt{\sqrt{5}}\)

\(c,\sqrt{51}-\sqrt{3}\approx5,4>5\)

\(d.\text{Vì}\) \(5>\sqrt{5}\Rightarrow\sqrt{85+5}>\sqrt{85+\sqrt{5}}\)