Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2711 = (33)11 = 333
815 = (34)5 = 320
Vì 33 > 20 => 333 > 320 => 2711 > 815
27 mũ 11 và 81 mũ 8
625 mũ 5 và 125 mũ 7
5 mũ 36 và 11 mũ 24
5 mũ 23 và 6,5 mũ 22
7.2 mũ 13 và 2 mũ 16
a)2437=(35)7=335 ; 910.275=330.315=345.
Vì 35 < 45 => 335<345=>2437<910.275.
b) 1511=311.511;813.1255=312.515.
Vì 311<312 và 511<515 => 311.511<312.515 => 1511 < 813.1255
`#3107.101107`
a)
`64^150` và `4^450`
Ta có:
`64^150 = (4^3)^150 = 4^(3*150) = 4^450`
Vì `450 = 450 => 4^450 = 4^450 => 64^150 = 4^450`
Vậy, `64^150 = 4^450`
b)
`81^64` và `27^100`
Ta có:
`81^64 = (3^4)^64 = 3^(4*64) = 3^256`
`27^100 = (3^3)^100 = 3^(3*100) = 3^300`
Vì `256 < 300 => 3^256 < 3^300 => 81^64 < 27^100`
Vậy, `81^64 < 27^100`
c)
`125^1000` và `25^3000`
Ta có:
`125^1000 = (5^3)^1000 = 5^(3*1000) = 5^3000`
Vì `5 < 25 => 5^3000 < 25^3000 => 125^1000 < 25^3000`
Vậy, `125^1000 < 25^3000`
d)
`4^30` và `3^40`
Ta có:
`4^30 = 4^(3*10) = (4^3)^10 = 64^10`
`3^40 = 3^(4*10) = (3^4)^10 = 81^10`
Vì `64 < 81 => 64^10 < 81^10 => 4^30 < 3^40`
Vậy, `4^30 < 3^40`
m)
`2^5000` và `5^2000`
Ta có:
`2^5000 = 2^(5*1000) = (2^5)^1000 = 32^1000`
`5^2000 = 5^(2*1000) = (5^2)^1000 = 25^1000`
Vì `32 > 25 => 32^1000 > 25^1000 => 2^5000 > 5^2000`
Vậy, `2^5000 > 5^2000`
h)
`6^450` và `3^750`
Ta có:
`6^450 = 6^(150*3) = (6^3)^150 = 216^150`
`3^750 = 3^(150*5) = (3^5)^150 = 243^150`
Vì `216 < 243 => 216^150 < 243^150 => 6^450 < 3^750`
Vậy, `6^450 < 3^750`
0)
`333^444` và `444^333`
Ta có:
`333^444 = 333^(4*111) = (333^4)^111 = (3^4 *111^4)^111 = 81^111 * 111^444`
`444^333 = 444^(3*111) = (444^3)^111 = (4^3 * 111^3)^111 = 64^111 * 111^333`
Vì `81 > 64;` `111^444 > 111^333`
`=> 81^111 * 111^444 > 64^111 * 111^333`
Vậy, `333^444 > 444^333.`
a) Ta có:
\(64^{150}=\left(2^6\right)^{150}=2^{900}\)
\(4^{450}=\left(2^2\right)^{450}=2^{900}\)
Mà: \(2^{900}=2^{900}\Rightarrow64^{150}=4^{450}\)
b) Ta có:
\(81^{64}=\left(3^4\right)^{64}=3^{256}\)
\(27^{100}=\left(3^3\right)^{100}=3^{300}\)
Mà: \(3^{300}>3^{256}\Rightarrow27^{100}>81^{64}\)
c) Ta có:
\(125^{1000}=\left(5^3\right)^{1000}=5^{3000}\)
Mà: \(25^{3000}>5^{3000}\Rightarrow25^{3000}>125^{1000}\)
d) Ta có:
\(4^{30}=\left(4^3\right)^{10}=64^{10}\)
\(3^{40}=\left(3^4\right)^{10}=81^{10}\)
Mà: \(81^{10}>64^{10}\Rightarrow3^{40}>4^{30}\)
m) Ta có:
\(2^{5000}=\left(2^5\right)^{1000}=32^{1000}\)
\(5^{2000}=\left(5^2\right)^{1000}=25^{1000}\)
Mà: \(25^{1000}< 32^{1000}\Rightarrow2^{5000}>5^{2000}\)
h) Ta có:
\(6^{450}=\left(6^3\right)^{150}=216^{150}\)
\(3^{750}=\left(3^5\right)^{150}=243^{150}\)
Mà: \(243^{150}>216^{150}\Rightarrow3^{750}>6^{450}\)
....
a/ \(27^{11}=\left(3^3\right)^{11}=3^{33}\); \(81^8=\left(3^4\right)^8=3^{32}< 3^{33}\Rightarrow81^8< 27^{11}\)
b/ \(3^{2n}=\left(3^2\right)^n=9^n\); \(2^{3n}=\left(2^3\right)^n=8^n< 9^n\Rightarrow2^{3n}< 3^{2n}\)
a. 2711= (33)11 = 333
818 = (34)8 = 332
Suy ra 333>332 hay 2711>818
b. 32n = (32)n = 9n
23n = (23)n = 8n
Mà 9>8 suy ra 9n>8n hay 32n>23n
c. 523 = 522 . 5
(6.5)22 = 622 . 522
Vì 622>5 suy ra 522 . 5<622 . 522 hay 523<(6.5)22
d. 7245-7244 = 7244(72-1) = 7244 . 71
7244-7243 = 7243(72-1) = 7243 . 71
Vì 7244>7243 suy ra 7244 . 71>7243 . 71 hay 7245-7244>7244-7243
a) 2711 và 818
\(27^{11}=\left(3^3\right)^{11}=3^{3.11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{4.8}=3^{32}\)
Vì 333 > 332 ⇒ 2711 >818
b) 523 và 6 . 522
\(5^{23}=5^{22}.5\)
Vì 522 . 5 < 6 . 522 ⇒ 523 < 6 . 522
ta có:
\(81^{12}=\left(3^4\right)^{12}=3^{38}\)
\(27^{13}=\left(3^3\right)^{13}=3^{39}\)
vì \(38< 39=>3^{38}< 3^{39}=>81^{12}< 27^{13}\)
vậy \(81^{12}< 27^{13}\)
81^12=3^(4.12)=3^48
27^13=3^(3.13)=3^39
Có 3^48>3^39 nên 81^12>27^13