Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=1-\frac{1}{2019}+1-\frac{1}{2020}+1-\frac{1}{2021}+1+\frac{3}{2018}$
$=4+(\frac{1}{2018}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2020}+\frac{1}{2018}-\frac{1}{2021})$
$> 4+0+0+0+0=4$
Giải:
Ta có: N=2019+2020/2020+2021
=>N=2019/2020+2021 + 2020/2020+2021
Vì 2019/2020 > 2019/2020+2021 ; 2020/2021 > 2020/2020+2021
=>M>N
Vậy ...
Chúc bạn học tốt!
Ta có : \(\dfrac{2019}{2020}>\dfrac{2019}{2020+2021}\)
\(\dfrac{2020}{2021}>\dfrac{2020}{2020+2021}\)
\(\Rightarrow\dfrac{2019}{2020}+\dfrac{2020}{2021}>\dfrac{2019+2020}{2020+2021}\)
\(\Rightarrow M>N\)
Ta có:
\(\frac{2019}{2021}< 1\)
\(\frac{2021}{2019}>1\)
\(\Rightarrow\frac{2019}{2021}+\frac{2021}{2019}< 2\)
\(\dfrac{2021}{2019}và\dfrac{2023}{2021}\)
\(\Rightarrow\dfrac{2021}{2019}-\dfrac{2}{2019}=\dfrac{2023}{2021}-\dfrac{2}{2021}\left(=1\right)\)
\(\Rightarrow\dfrac{2}{2019}>\dfrac{2}{2021}\Rightarrow\dfrac{2021}{2019}< \dfrac{2023}{2021}\)
Chứng minh bđt phụ nếu a>b \(\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\left(vớim\in N^{\circledast}\right)\Rightarrow a\left(b+m\right)>b\left(a+m\right)\Rightarrow ab+am>ab+bm\Rightarrow am>bm\Rightarrow a>b\) \(\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\left(1\right)\)
Áp dụng bđt (1) có :
\(2021>2019\Rightarrow\dfrac{2021}{2019}>\dfrac{2021+2}{2019+2}=\dfrac{2023}{2021}\)
Ta có: \(\frac{2019}{2020}>\frac{2019}{2020+2021};\frac{2020}{2021}>\frac{2020}{2020+2021}\)
=> \(\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019}{2020+2021}+\frac{2020}{2020+2021}=\frac{2019+2020}{2020+2021}\)
=> A > B.
bài 1:
ssh của A là:
(151-3):2+1=75
A=(151+3)x75:2=5775
đáp số: 5775
\(\frac{2019}{2021}+\frac{2021}{2019}< 2\)
Ta có: \(\frac{a}{b}+\frac{b}{a}\le2\)
Dấu bằng xảy ra khi : a=b
=>\(\frac{2021}{2019}+\frac{2019}{2021}< 2\)