Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này dễ vc =='
\(5x^2+7y^2=-100\)
Hiển nhiên pt vô nghiệm vì VT\(\ge0\)
Vậy không tồn tại cặp x,y thỏa mãn pt trên
Tìm k là số các cặp số thực (x;y) khác 0 thõa mãn:
\(\left(x^2+1\right)\left(x^2+y^2\right)-4x^2y=0\)
MÌnh nghĩ thế này ko bt đúng ko
Ta có: \(\hept{\begin{cases}x^2+1\ge2x\\x^2+y^2\ge2xy\end{cases}}\)
\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)\ge4x^2y\)
\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)-4x^2y\ge0\)
Dấu = xảy ra khi x=y=1
Vậy (x;y)=(1;1)
Ta có pt \(\Leftrightarrow\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)
Áp dụng BĐt cô-si , ta có
\(x^2+1\ge2\sqrt{x^2}=2x;x^2+y^2\ge2xy\)
Nhân vào, ta có \(\left(x^2+1\right)\left(y^2+x^2\right)\ge4x^2y\)
Dấu = xảy ra <=> x=y=1
^_^
Viết dưới dạng pt ẩn x:
\(x^2-2\left(y-3\right)x+\left(y^2-4y+5\right)=0\)
Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow\left(y-3\right)^2-\left(y^2-4y+5\right)\ge0\Leftrightarrow-2y+4\ge0\Leftrightarrow y\le2\)
Vậy Max y = 2, khi đó x = -1.
Ta có 5x2 >= 0
7y2 >= 0
=> 5x2 + 7y2 + 100 > 0
Vậy pt vô nghiệm
\(\frac{x+y}{x^2-xy+y^2}=\frac{3}{7}\)
\(\Leftrightarrow3x^2-3xy+3y^2=7x+7y\)
\(\Leftrightarrow3x^2+\left(-3y-7\right)x+3y^2-7y=0\)
Để phương trình theo nghiệm x có nghiệm thì:
\(\Delta=\left(-3y-7\right)^2-4.3.\left(3y^2-7y\right)\ge0\)
\(\Leftrightarrow0\le y\le5\)
Thế lần lược các giá trị y cái nào làm cho x nguyên thì nhận.
2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)
Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)
Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))
Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1
3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)
Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Từ đó suy ra \(ab+bc+ca\le1\)
\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Ta co
\(\Rightarrow5x^2+7y^2=-100\)
Vi \(5x^2\ge0\forall x\in Q\)va \(7y^2\ge0\forall x\in Q\)
\(\Rightarrow5x^2+7y^2\ge0\forall x,y\in Q\Rightarrow x,y\in\varnothing\)