Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) x : y = 3 => x = 3y
=> x+ y = 3y + y = 4y = \(-\frac{6}{5}\) => y = \(-\frac{6}{5}\) : 4 = \(-\frac{3}{10}\)
=> x = 3.\(-\frac{3}{10}\) = \(-\frac{9}{10}\)
2) => \(\frac{-18}{6}<\frac{a}{6}<\frac{2}{6}\) => -18 < a < 2
a nguyên => a = -17; -16;...1.
B. \(2-\frac{13}{3}< x< 1-2,4\)
\(-\frac{7}{3}< x< -\frac{7}{5}\)
\(\Rightarrow x=-\frac{7}{4}\)
C. 13x + 350 = 1000
13x = 650
x = 50
D. \(\frac{4}{7}x-\frac{5}{8}=\frac{17}{24}\)
\(\frac{4x}{7}=\frac{4}{3}\)
\(\Rightarrow12x=28\)
\(\Rightarrow x=\frac{7}{3}\)
E. \(\frac{3}{7}x=5\)
\(x=5:\frac{3}{7}=\frac{5.7}{3}=\frac{35}{3}\)
Vì \(x\in Z\Rightarrow x\in O\)
G. 10
1. \(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{80}{84}< \frac{84x+48}{84}< \frac{49}{84}\)
\(-80< 84x+48< 49\)
\(\begin{cases}-80< 84x+48\\84x+48< 49\end{cases}\)
\(\begin{cases}84x>-128\\84x< 1\end{cases}\)
\(\begin{cases}x>-\frac{32}{21}\\x< \frac{1}{84}\end{cases}\)
\(\Rightarrow-\frac{32}{21}< x< \frac{1}{84}\)
\(-\frac{17}{21}\div\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{32}{21}< x< \frac{1}{84}\)
\(-1^{11}_{21}< x< \frac{1}{84}\)
\(\Rightarrow x\in\left\{-1;0\right\}\)
Vậy x = 0
\(\frac{4}{3}\times1,25\times\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\)
\(\frac{77}{16}< 2x< \frac{37}{6}\)
\(\frac{77}{32}< x< \frac{37}{12}\)
\(2^{13}_{32}< x< 3^1_{12}\)
=> x = 3
1)
Xét \(\left|x\right|>3\)\(\Rightarrow\)\(C>0\)
Xét \(0\le\left|x\right|< 3\)\(\Rightarrow\)\(C< 0\)
+ Với \(\left|x\right|=0\)\(\Leftrightarrow\)\(x=0\) thì \(C=-2\)
+ Với \(\left|x\right|=1\)\(\Leftrightarrow\)\(x=\pm1\) thì \(C=-3\)
+ Với \(\left|x\right|=2\)\(\Leftrightarrow\)\(x=\pm2\) thì \(C=-6\)
Vậy GTNN của \(C=-6\) khi \(x=\pm2\)
2)
Xét \(x\ge0\)\(\Rightarrow\)\(x-\left|x\right|=0\)
Xét \(x< 0\)\(\Rightarrow\)\(x-\left|x\right|=2x< 0\)
Vậy GTLN của \(x-\left|x\right|=0\) khi \(x>0\)
Ví dụ một bài toán :
Tìm GTLN của B = 10-4 | x-2|
Vì |x-2| \(\ge0\forall x\)
\(\Rightarrow-4.\left|x-2\right|\le0\forall x\). Tại sao mà tìm GTLN mà lại nhỏ hơn hoặc bằng 0 ạ
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
Lời giải:
$|x-\frac{2}{3}|\leq \frac{20}{3}$
$\Rightarrow \frac{-20}{3}\leq x-\frac{2}{3}\leq \frac{20}{3}$
$\Rightarrow \frac{-20}{3}+\frac{2}{3}\leq x\leq \frac{20}{3}+\frac{2}{3}$
$\Rightarrow -6\leq x\leq \frac{22}{3}< 8$
Mà $x$ nhận giá trị nguyên nên $x\in \left\{-6; -5; -4; -3; -2; -1; 0; 1;2;3;4;5;6;7\right\}$