Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(\Rightarrow2S=6+3+\frac{3}{2}+....+\frac{3}{2^8}\)
\(\Rightarrow2S-S=\left(6+3+\frac{3}{2}+....+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+....+\frac{3}{2^9}\right)\)
\(\Rightarrow S=6-\frac{3}{2^9}=\frac{3069}{512}\)
\(S=1+2+2^2+2^3+...+2^{10}\)
\(S=1+2\left(2+2^2+...+2^9\right)\)
\(S=1+2\left(S-2^{10}\right)\)
\(S=1+2S-2^{11}\)
\(S=2^{11}-1\)
2S= 2+22+....+211
2S-S=(2+22+....+211)-(1+2+....+210)
S=211 - 1
dễm
\(\frac{2^3.9^4+9^3.45}{9^2.10-9^2}=\frac{9^3\left(72+45\right)}{9^3}=72+45=117\)
\(\frac{\left(-2\right)^3.3^3.5^3.7.8}{3.5^3.2^4.6.7}=\frac{\left(-2\right)^2.3.3^2.5^3.7.8}{3.5^3.2\text{^2}.2^2.6.7}=\frac{3^2.8}{2^2.6}=\frac{9.8}{4.6}=\frac{3.3.4.2}{4.3.2}=3\)
Ta có
\(\frac{\left(-2\right)^3.3^3.5^3.7.8}{3.5^3.2^4.42}=\frac{\left(-2\right)^3.3^2.7.8}{2^4.7.6}=\frac{-1.3^2.4}{2.3}=-1.3.2=-6\)
\(S=3+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^9}\)
\(\Rightarrow2S=6+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^8}\)
\(\Rightarrow2S-S=3+\frac{3}{2}-\frac{3}{2^9}\)
\(S=\frac{9}{2}-\frac{3}{2^9}\)