Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{1}{5^2}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{2022}}\)
=>\(25\cdot S=1+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2020}}\)
=>\(25S-S=1+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2020}}-\dfrac{1}{5^2}-\dfrac{1}{5^4}-...-\dfrac{1}{5^{2022}}\)
=>\(24S=1-\dfrac{1}{5^{2022}}\)
=>\(S=\dfrac{1}{24}-\dfrac{1}{24\cdot5^{2022}}< \dfrac{1}{24}\)
Bài 3:
a: a*S=a^2+a^3+...+a^2023
=>(a-1)*S=a^2023-a
=>\(S=\dfrac{a^{2023}-a}{a-1}\)
b: a*B=a^2-a^3+...-a^2023
=>(a+1)B=a-a^2023
=>\(B=\dfrac{a-a^{2023}}{a+1}\)
1) \(5-\left(1+\dfrac{1}{3}\right):\left(1-\dfrac{1}{3}\right)\)
\(=5-\dfrac{4}{3}:\dfrac{2}{3}\)
\(=5-\dfrac{4}{3}\cdot\dfrac{3}{2}\)
\(=5-\dfrac{4}{2}\)
\(=5-2\)
\(=3\)
b) \(\left(1+\dfrac{2}{3}-\dfrac{5}{4}\right)-\left(1-\dfrac{5}{4}\right)+2022-\dfrac{2}{3}\)
\(=1+\dfrac{2}{3}-\dfrac{5}{4}-1+\dfrac{5}{4}++2022-\dfrac{2}{3}\)
\(=\left(1-1\right)+\left(\dfrac{2}{3}-\dfrac{2}{3}\right)+\left(-\dfrac{5}{4}+\dfrac{5}{4}\right)+2022\)
\(=0+0+0+2022\)
\(=2022\)
2) \(0,7^2\cdot x=0,49^2\)
\(\Rightarrow x=\dfrac{0,49^2}{0,7^2}\)
\(\Rightarrow x=\left(\dfrac{0,49}{0,7}\right)^2\)
\(\Rightarrow x=\left(0,7\right)^2\)
\(\Rightarrow x=0,49\)
b) \(x:\left(-0,5\right)^3=\left(0,5\right)^2\)
\(\Rightarrow x=\left(0,5\right)^2\cdot\left(-0,5\right)^3\)
\(\Rightarrow x=\left(-0,5\right)^5\)
\(\Rightarrow x=-\dfrac{1}{32}\)
2:
a: =>x*0,49=0,49^2
=>x=0,49
b: =>x=(0,5)^2*(-1)*(0,5)^3=-(0,5)^5
a: \(A=3^{100}-3^{99}+3^{98}-...+3^2-3\)
=>\(3A=3^{101}-3^{100}+3^{99}-...+3^3-3^2\)
=>\(4A=3^{101}-3\)
=>\(A=\dfrac{3^{101}-3}{4}\)
b: \(B=\left(-2\right)^0+\left(-2\right)^1+...+\left(-2\right)^{2024}\)
=>\(B\cdot\left(-2\right)=\left(-2\right)^1+\left(-2\right)^2+...+\left(-2\right)^{2025}\)
=>\(-2B-B=\left(-2\right)^1+\left(-2\right)^2+...+\left(-2\right)^{2025}-\left(-2\right)^0-\left(-2\right)^1-...-\left(-2\right)^{2024}\)
=>\(-3B=-2^{2025}-1\)
=>\(B=\dfrac{2^{2025}+1}{3}\)
c: \(C=\left(-\dfrac{1}{5}\right)^0+\left(-\dfrac{1}{5}\right)^1+...+\left(-\dfrac{1}{5}\right)^{2023}\)
=>\(\left(-\dfrac{1}{5}\right)\cdot C=\left(-\dfrac{1}{5}\right)^1+\left(-\dfrac{1}{5}\right)^2+...+\left(-\dfrac{1}{5}\right)^{2024}\)
=>\(\left(-\dfrac{6}{5}\right)\cdot C=\left(-\dfrac{1}{5}\right)^{2024}-\left(-\dfrac{1}{5}\right)^0\)
=>\(C\cdot\dfrac{-6}{5}=\dfrac{1}{5^{2024}}-1=\dfrac{1-5^{2024}}{5^{2024}}\)
=>\(C\cdot\dfrac{6}{5}=\dfrac{5^{2024}-1}{5^{2024}}\)
=>\(C=\dfrac{5^{2024}-1}{5^{2024}}:\dfrac{6}{5}=\dfrac{5^{2024}-1}{6\cdot5^{2023}}\)
a
ĐK: \(x\ne5\)
\(\dfrac{x-5}{3}=\dfrac{-12}{5-x}\\ \Leftrightarrow\dfrac{x-5}{3}=\dfrac{12}{x-5}\\ \Leftrightarrow\left(x-5\right)^2=12.3=36\\ \Leftrightarrow\left\{{}\begin{matrix}x-5=6\\x-5=-6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=11\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
b
ĐK: \(x\ne0;x\ne-1\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{x}.\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2023}{4048}\\ \Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2023}{4048}=\dfrac{1}{4048}\\ \Leftrightarrow4048=x+1\\ \Leftrightarrow x=4047\left(tm\right)\)
a: =>(x-5)/3=12/(x-5)
=>(x-5)^2=36
=>x-5=6 hoặc x-5=-6
=>x=11 hoặc x=-1
b: =>\(2\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2023}{2024}\)
=>1/2-1/3+1/3-1/4+...+1/x-1/x+1=2023/4048
=>1/2-1/x+1=2023/4048
=>1/(x+1)=1/4048
=>x+1=4048
=>x=4047
Lời giải:
Gọi tổng trên là $A$
$A=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+....+\frac{1}{\frac{2023.2024}{2}}$
$=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2023.2024}$
$=2(\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2024-2023}{2023.2024})$
$=2(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{2023}-\frac{1}{2024})$
$=2(\frac{1}{3}-\frac{1}{2024})=\frac{2021}{3036}$
A=23.41+24.51+....+22023.20241
=23.4+24.5+...+22023.2024=3.42+4.52+...+2023.20242
=2(4−33.4+5−44.5+...+2024−20232023.2024)=2(3.44−3+4.55−4+...+2023.20242024−2023)
=2(13−14+14−15+....+12023−12024)=2(31−41+41−51+....+20231−20241)
=2(13−12024)=20213036=2(31−20241)=30362021
\(S=-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+...+\dfrac{1}{5^{2022}}-\dfrac{1}{5^{2023}}\)
\(\Rightarrow\dfrac{25}{5}=-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{2021}}-\dfrac{1}{5^{2022}}\)
\(\Rightarrow5S+S=\left(-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{2021}}-\dfrac{1}{5^{2022}}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5^2}-...+\dfrac{1}{5^{2022}}-\dfrac{1}{5^{2023}}\right)\)
\(\Rightarrow6S=-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{2021}}-\dfrac{1}{5^{2022}}-\dfrac{1}{5}+\dfrac{1}{5^2}-...+\dfrac{1}{5^{2022}}-\dfrac{1}{5^{2023}}\)
\(\Rightarrow6S=-1-\dfrac{1}{5^{2023}}\)
\(\Rightarrow S=\dfrac{-1-\dfrac{1}{5^{2023}}}{6}\)