Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VÀO TCN
Loa loa, tin nóng hổi. CẶP VỢ CHỒNG SON TRẺ NHẤT VIỆT NAM ĐÂY
https://olm.vn/thanhvien/nhu140826
https://olm.vn/thanhvien/trungkienhy79
Tình yêu đã giúp cho hai anh chị 2k6 này bất chấp tất cả (học tập, vui chơi),nể thật.
vÀO TCN CỦA MK
Loa loa, tin nóng hổi. CẶP VỢ CHỒNG SON TRẺ NHẤT VIỆT NAM ĐÂY
https://olm.vn/thanhvien/nhu140826
https://olm.vn/thanhvien/trungkienhy79
Tình yêu đã giúp cho hai anh chị 2k6 này bất chấp tất cả (học tập, vui chơi),nể thật.
Bài 1:
a, Ta có:
\(\left(a+b+c\right)^2-\left(ab+bc+ca\right)=0\Leftrightarrow a^2+b^2+c^2+ab+bc+ca=0\)\(\Leftrightarrow2a^2+2b^2+2c^2+2ab+2bc+2ca=0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=0\Leftrightarrow a+b=b+c=c+a=0\)
\(\Leftrightarrow a=b=c=0\)
Vậy điều kiện để phân thức M được xác định là a, b, c không đồng thời = 0
b, Ta có:
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
Đặt: \(a^2+b^2+c^2=x,ab+bc+ca=y\)
=> \(\left(a+b+c\right)^2=x+2y\)
Ta cũng có:
\(M=\dfrac{x\left(x+2y\right)+y^2}{x+2y-y}=\dfrac{x^2+2xy+y^2}{x+y}=\dfrac{\left(x+y\right)^2}{x+y}=x+y\)
\(=a^2+b^2+c^2+ab+bc+ca\)
Bài 2:
a: \(\Leftrightarrow x^2+3x-x^2-11=0\)
=>3x-11=0
=>x=11/3
b: \(\Leftrightarrow x^3+8-x^3-2x=0\)
=>8-2x=0
=>x=4
Bài 3:
a: Sửa đề: \(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y=4xy\)
b: \(=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)\)
\(=\left(9n-9\right)\left(5n+5\right)=9\left(n-1\right)\left(5n+5\right)⋮9\)
Câu 1:
\(\dfrac{A}{B}=\dfrac{4x^{n+1}y^2}{3x^3y^{n-1}}=\dfrac{4}{3}x^{n-2}y^{2-n+1}=\dfrac{4}{3}x^{n-2}y^{3-n}\)
Để A chia hết cho B thì \(\left\{{}\begin{matrix}n-2>=0\\3-n>=0\end{matrix}\right.\Leftrightarrow2\le n\le3\)
Bài 2:
\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x+y\right)\left(x-y\right)+3\left(x+y\right)^2}{x+y}\)
\(=x^2-xy+y^2-2\left(x-y\right)+3\left(x+y\right)\)
\(=x^2-xy+y^2-2x+2y+3x+3y\)
\(=x^2-xy+y^2+x+5y\)
\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)
\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)
\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x
3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2
Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)
Tương tự ta có b^2-a^2=n
Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn
Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1
Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)
Từ (1) và (2)=> n chia hết cho 40
a) \(\left(3x^{n+1}-y^{n-1}\right)-3\left(x^{n+1}+5y^{n-1}\right)-4\left(x^{n+1}+2y^{n-1}\right)\)
\(=3x^{n+1}-y^{n-1}-3x^{n+1}-15y^{n-1}+4x^{n+1}+8y^{n-1}\)
\(=-8y^{n-1}+4x^{n+1}\)
b) \(\left(\dfrac{3}{4}x^{n+1}-\dfrac{1}{2}y^n\right)\cdot2xy-\left(\dfrac{2}{3}x^{n+1}-\dfrac{5}{6}y^n\right)\cdot7xy\)
\(=\dfrac{3}{2}x^{n+2}y-xy^{n+1}+\left(-\dfrac{2}{3}x^{n+1}-\dfrac{5}{6}y^n\right)\cdot7xy\)
\(=\dfrac{3}{2}x^{n+2}y-xy^{n+1}-\dfrac{14}{3}x^{n+2}y+\dfrac{35}{6}xy^{n+1}\)
\(=-\dfrac{19}{6}x^{n+2}y+\dfrac{29}{6}xy^{n+1}\)
a)\(\left(3x^{n+1}-y^{n-1}\right)-3\left(x^{n+1}+5y^{n-1}\right)+4\left(x^{n+1}+2y^{n-1}\right)\)
\(=3x^{n+1}-y^{n-1}-3x^{n+1}-15y^{n-1}+4x^{n+1}+8y^{n-1}\)
\(=4x^{n+1}-8y^{n-1}\) \(\left(=4\left(x^{n+1}-2y^{n-1}\right)\right)\)
a) \(\left(x^2-2x+2\right)\left(x-2\right)\left(x^2-2x+2\right)\left(x+2\right)\)
\(=\left(x^3-2x^2-2x^2+4x+2x-4\right)\left(x^3+2^3\right)\)
\(=\left(x^3-4x^2+6x-4\right)\left(x^3+8\right)\)
\(=x^6+8x^3-4x^5-32x^2+6x^4+48x-4x^3-32\)
\(=x^6-4x^5+4x^3-32x^2+48x-32\)
b) \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)
\(=\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]+x^3-3x\left(x^2-1\right)\)
\(=2x\left[\left(x^2+2x+1\right)-\left(x^2-1\right)+\left(x^2-2x+1\right)\right]+x^3-\left(3x^3-3x\right)\)
\(=2x\left(x^2+2x+1-x^2+1+x^2-2x+1\right)+x^3-3x^3+3x\)
\(=2x\left(x^2+3\right)+x^3-3x^3+3x\)
\(=2x^3+6x-2x^3+3x\)
\(=9x\)
2 câu kia đợi tí đã nhé!
c) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)
\(=\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+\left(a^2+b^2+c^2+2ab-2bc-2ca\right)+\left(4a^2-4ab+b^2\right)\)
\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2+2ab-2bc-2ca+4a^2-4ab+b^2\)
\(=6a^2+3b^2+2c^2\)
d) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+2\left(a+b\right)^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2+2ab-2bc-2ca+2a^2+2ab+b^2\)
\(=4a^2+4b^2+2c^2+6ab.\)