Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(2\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2+\left(x+y\right)^2.\)
\(=\left[\left(x-y\right)+\left(x+y\right)\right]^2=\left(x-y+x+y\right)^2=x^2\)
\(b,\)\(\left(2x-3\right)\left(4x^2+6x+9\right)-\left(54+8x\right)\)
\(=8x^2-27-54-8x=8x^2-8x-81\)
\(c,\)\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=27x^3+y^3-\left(27x^3-y^3\right)=2y^3\)
\(d,\)\(\left(a+b+c\right)^2-\left(a-c\right)^2-2ab+2bc\)
\(=a^2+b^2+c^2+2ab+2bc+2ac-a^2+2ac-c^2-2ab+2bc\)
\(=b^2+4bc+4ac\)
a: \(F=-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)
\(=-\left(2x-y\right)^2\cdot\left[2x-y+x\right]-y^3\)
\(=-\left(2x-y\right)^2\cdot\left(3x-y\right)-y^3\)
\(=\left(-4x^2+4xy-y^2\right)\left(3x-y\right)-y^3\)
\(=-12x^3+4x^2y+12x^2y-4xy^2-3xy^2+y^3-y^3\)
\(=-12x^3+16x^2y-7xy^2\)
\(\left(x-2\right)^2+y^2=0\)
mà \(\left(x-2\right)^2+y^2>=0\forall x,y\)
nên dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\)
=>x=2 và y=0
Thay x=2 và y=0 vào F, ta được:
\(F=-12\cdot2^3+16\cdot2^2\cdot0-7\cdot2\cdot0^2\)
\(=-12\cdot2^3\)
\(=-12\cdot8=-96\)
b: \(G=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=x^3+y^3+3\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)
\(=x^3+y^3+3\left(8x^3-y^3\right)\)
\(=x^3+y^3+24x^3-3y^3\)
\(=25x^3-2y^3\)
Ta có: \(\left\{{}\begin{matrix}x+y=2\\y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-3\\x=2-y=2-\left(-3\right)=2+3=5\end{matrix}\right.\)
Thay x=5 và y=-3 vào G, ta được:
\(G=25\cdot5^3-2\cdot\left(-3\right)^3\)
\(=25\cdot125-2\cdot\left(-27\right)\)
\(=3125+54=3179\)
c: \(H=\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)
\(=x^3+27y^3+27x^3-y^3\)
\(=28x^3-26y^3\)
Ta có: \(\left\{{}\begin{matrix}3x-y=5\\x=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=3x-5=3\cdot2-5=1\end{matrix}\right.\)
Thay x=2 và y=1 vào H, ta được:
\(H=28\cdot2^3-26\cdot1^3\)
\(=28\cdot8-26\)
=198
Cái này đơn giản như đang giỡn thôi:
\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)^3-27x^2y\)
\(=\left(3x\right)^3+y^3-\left[\left(3x\right)^3-3.\left(3x^2\right).+3.3x.y^2-y^3\right]-27x^2y\)
\(=27x^3+y^3-27x^3+27x^2y-9xy^2+y^3-27x^2y\)
\(=2y^3-9xy^2\)
\((2x+y) (4x^2-2xy+y^2)-(3x-y)(9x^2+3xy+y^2) =8x^3+y^3-9x^3+y^3=17x^3\)
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(2x+y\right)\left[\left(2x\right)^2-2xy+y^2\right]-\left(3x-y\right)\left[\left(3x\right)^2+3xy+y^2\right]\)
\(=\left(2x\right)^3+y^3-\left[\left(3x\right)^3-y^3\right]\)
\(=8x^3+y^3-27x^3+y^3\)
\(=-19x^3+2y^3\)
\(=\left(2x\right)^3+y^3+\left(3x\right)^3-y^3-35\left(x^3-1\right)\)
\(=8x^3+27x^3-35x^3+35\)
\(=35x^3-35x^3+35=35\)
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)-35\left(x-1\right)\left(x^2+x+1\right)\)
\(=8x^3+y^3+27x^3-y^3-35\left(x^3-1\right)\)
\(=35x^3-35x^3+35\)
\(=35\)
a) \(2xy+3z+6y+xz\)
\(=2xy+2.3y\)
\(=2y\left(x+3\right)+3z+xz\)
\(=2y\left(x+3\right)+z\left(x+3\right)\)
\(=\left(x+3\right)\left(2y+z\right)\)
c) \(x^4-9x^3+x^2-9x\)
\(=x\left(x^3-9x^2+x-9\right)\)
\(=x\left(x-9\right)\left(x^2+1\right)\)
Ta có:
\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left[\left(3x\right)^3+y^3\right]-\left[\left(3x\right)^3-y^3\right]\)
\(=\left(3x\right)^3+y^3-\left(3x\right)^3+y^3\)
\(=2y^3\)