Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{a^3-1}+\dfrac{1}{a-1}\right]\cdot\dfrac{a\left(a^2+1\right)}{2a}\)
\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{a^2+1}{2}\)
\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{a^2+1}{2}=\dfrac{a^2+1}{2}\)
\(C=\left(\dfrac{1}{\left(a^2+1\right)\left(a+1\right)^2}+\dfrac{2}{\left(a+1\right)^3}\cdot\dfrac{a+1}{a}\right):\dfrac{a-1}{a^3}\)
\(=\left(\dfrac{1}{\left(a^2+1\right)\left(a+1\right)^2}+\dfrac{2}{a\left(a+1\right)^2}\right):\dfrac{a-1}{a^3}\)
\(=\dfrac{a+2\cdot\left(a^2+1\right)}{a\left(a^2+1\right)\left(a+1\right)^2}\cdot\dfrac{a^3}{a-1}\)
\(=\dfrac{2a\left(a+1\right)}{\left(a^2+1\right)\cdot\left(a+1\right)^3}\cdot\dfrac{a^2}{a-1}\)
\(=\dfrac{2a^3}{\left(a^2+1\right)\left(a+1\right)^2\cdot\left(a-1\right)}\)
Đặt \(\left(a-1\right)^2=t\)
Ta có: \(\left(a-1\right)^4-11\left(a-1\right)^2+30\)
\(=t^2-11t+30\)
\(=t\left(t-5\right)-6\left(t-5\right)=\left(t-5\right)\left(t-6\right)\)
\(=\left[\left(a-1\right)^2-5\right]\left[\left(a-1\right)^2-6\right]\)
\(=\left(a^2-2a-4\right)\left(a^2-2a-5\right)\)
Đặt \(a^2-2a=k\)
Ta có: \(3\left(a-1\right)^4-18\left(a^2-2a\right)-3\)
\(=3\left(a^2-2a+1\right)^2-18\left(a^2-2a\right)-3\)
\(=3\left(k+1\right)^2-18k-3\)
\(=3k^2+6k+3-18k-3\)
\(=3k^2-12k=3k\left(k-4\right)\)
\(=3\left(a^2-2a\right)\left(a^2-2a-4\right)\)(Ở đây bạn ghi thêm điều kiện nhé)
Khi đó: \(N=\frac{\left(a^2-2a-4\right)\left(a^2-2a-5\right)}{3\left(a^2-2a\right)\left(a^2-2a-4\right)}=\frac{a^2-2a-5}{3\left(a^2-2a\right)}\)
\(A=\left(\dfrac{-\left(2a-1\right)}{2a+1}+\dfrac{\left(2a-1\right)^2}{2a+1}\cdot\dfrac{1}{\left(2a-1\right)\left(2a+1\right)}\right)\cdot\left(\dfrac{4a\left(a+1\right)+1}{4a^2}\right)-\dfrac{1}{2a}\)
\(=\left(\dfrac{-\left(2a-1\right)}{2a+1}+\dfrac{2a-1}{\left(2a+1\right)^2}\right)\cdot\dfrac{4a^2+4a+1}{4a^2}-\dfrac{1}{2a}\)
\(=\dfrac{-\left(2a-1\right)\left(2a+1\right)}{\left(2a+1\right)^2}\cdot\dfrac{\left(2a+1\right)^2}{4a^2}-\dfrac{1}{2a}\)
\(=\dfrac{-\left(4a^2-1\right)}{4a^2}-\dfrac{2a}{4a^2}\)
\(=\dfrac{-4a^2-2a+1}{4a^2}\)
minh giai phan d, nha bn :
x-a/b+c + x-b/c+a + x-c/a+b=3
=> (x-a/b+c - 1)+(x-b/a+c - 1 )+(x-c/a+b - 1) = 3-3=0
=>x-a-b-c/b+c + x-a-b-c/a+c + x-a-b-c/a+b =0
=>(x-a-b-c)(1/b+c + 1/a+c + 1/a+b )=0
Vi 1/b+c + 1/a+c + 1/a+b luon lon hon 0=>x-a-b-c=0
=>x=a+b+c
a: \(A=\dfrac{x\left(x-1\right)^2\cdot\left(x+1\right)^2}{x^2+1}:\left[\left(x+1\right)^2\cdot\left(x-1\right)^2\right]\)
\(=\dfrac{x}{x^2+1}\)
b: Khi x=-1/2 thì \(A=\dfrac{-1}{2}:\left(\dfrac{1}{4}+1\right)=\dfrac{-1}{2}:\dfrac{5}{4}=\dfrac{-2}{5}\)
c: Để A=1/2 thì \(\dfrac{x}{x^2+1}=\dfrac{1}{2}\)
\(\Leftrightarrow x=1\)(loại)
\(\left(\dfrac{2a^3+a^2-a}{a^3-1}-2+\dfrac{1}{1-a}\right):\left(1:\dfrac{2a-1}{a-a^2}\right)\)
\(=\left(\dfrac{2a^3+a^2-a-2a^3+2-a^2-a-1}{\left(a-1\right)\left(a^2+a+1\right)}\right):\left(\dfrac{a\left(1-a\right)}{2a-1}\right)\)
\(=\dfrac{-2a+1}{\left(a-1\right)\left(a^2+a+1\right)}.\dfrac{2a-1}{a\left(1-a\right)}\)
\(=\dfrac{6a-3}{\left(a-1\right)^2\left(a^2+a+1\right)}\)
---
Thấy sai sai :vv