Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=10\sqrt{2}-4\sqrt{2}+6\sqrt{2}=12\sqrt{2}\)
b: \(=5\sqrt{7}-4\sqrt{7}+3\sqrt{7}=4\sqrt{7}\)
c: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{6}=\dfrac{1}{6}\sqrt{6}\)
d: \(=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)
e: \(=\sqrt{5}+\dfrac{2}{5}\sqrt{5}+\sqrt{5}=2.4\sqrt{5}\)
f: \(=\dfrac{1}{5}\sqrt{5}+\dfrac{3}{2}\sqrt{2}+\dfrac{5}{2}\sqrt{2}=\dfrac{1}{5}\sqrt{5}+4\sqrt{2}\)
a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
= \(2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)
= \(-\sqrt{5}+15\sqrt{2}\)
b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
= \(\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
= \(2.7-2\sqrt{21}+7+2\sqrt{21}=14+7=21\)
c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
= \(6+2\sqrt{6}.\sqrt{5}+5-2\sqrt{30}\)
= \(11+2\sqrt{30}-2\sqrt{30}=11\)
d) \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
= \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right).8\)
= \(4-4\sqrt{2}-12\sqrt{2}+64\sqrt{2}=4+48\sqrt{2}\)
Bài này dễ ẹc ( đâu có khó đâu :)) )
a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
\(=\sqrt{2^2.5}-\sqrt{3^2.5}+3\sqrt{3^2.2}+\sqrt{6^2.2}\)
\(=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)
\(=\left(2-3\right)\sqrt{5}+\left(9+6\right)\sqrt{2}\)
\(=15\sqrt{2}-\sqrt{5}\)
b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
\(=\sqrt{2^2.7}.\sqrt{7}-2\sqrt{3}.\sqrt{7}+\sqrt{7}.\sqrt{7}+\sqrt{2^2.21}\)
\(=2.7-2\sqrt{21}+7+2\sqrt{21}\)
\(=14+7+\left(2-2\right)\sqrt{21}=21\)
c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
\(=6+2\sqrt{30}+5-\sqrt{2^2.30}\)
\(=6+5+2\sqrt{30}-2\sqrt{30}=11\)
d) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
\(=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{2^2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{10^2.2}\right):\dfrac{1}{8}\)
\(=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right).8\)
\(=2\sqrt{2}-12\sqrt{2}+64\sqrt{2}=54\sqrt{2}\)
Hok tốt
câu g
(câu cuối) đề nhiều trôi hết nhìn thấy mỗi câu (g)
\(G=0,1\sqrt{200}+2\sqrt{0,08}+0,4\sqrt{50}\)
\(G=0,1.10\sqrt{2}+\dfrac{2.2}{10}\sqrt{2}+0,4.5\sqrt{2}\)
\(G=\sqrt{2}\left(1+\dfrac{2}{5}+2\right)=\dfrac{\sqrt{2}\left(5+2+10\right)}{5}=\dfrac{17\sqrt{2}}{5}\)
a: Sửa đề: \(5\dfrac{1}{5}-\dfrac{1}{2}\sqrt{20}+\sqrt{5}\)
\(=5.2-\dfrac{1}{2}\cdot2\sqrt{5}+\sqrt{5}=5.2\)
b: \(=\dfrac{1}{2}\sqrt{2}+\dfrac{3}{2}\sqrt{2}+\dfrac{5}{2}\sqrt{2}=\dfrac{9}{2}\sqrt{2}\)
c: \(=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+\sqrt{77}=-\sqrt{5}+9\sqrt{2}+\sqrt{77}\)
d: \(=\dfrac{1}{10}\cdot10\sqrt{2}+\dfrac{2}{5}\sqrt{2}+0.4\cdot5\sqrt{2}\)
\(=\dfrac{17}{5}\sqrt{2}\)
a: \(=\sqrt{5}-3\sqrt{5}-4\sqrt{3}+15\sqrt{3}=-2\sqrt{5}+11\sqrt{3}\)
b: \(=3\sqrt{10}-\sqrt{5}+6-\sqrt{2}\)
c; \(=15\sqrt{2}-10\sqrt{3}-12\sqrt{2}-\sqrt{3}=-11\sqrt{3}+3\sqrt{2}\)
d: \(=3-\sqrt{3}+\sqrt{3}-1=2\)
f: \(=\sqrt{10}-\sqrt{10}-2-2\sqrt{10}=-2-2\sqrt{10}\)
a) \(\sqrt{18}\)-2\(\sqrt{50}\)+\(\sqrt{\left(2-\sqrt{2}\right)^2}\)
=3\(\sqrt{2}\)-10\(\sqrt{2}\)+(2-\(\sqrt{2}\))2
= 3\(\sqrt{2}\)-10\(\sqrt{2}\)+4-2
= -7\(\sqrt{2}\)+2
a) \(\sqrt{18}-2\sqrt{50}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
=\(3\sqrt{2}-10\sqrt{2}+2-\sqrt{2}=2-8\sqrt{2}\)
b)\(\sqrt{\dfrac{1}{3}}+\dfrac{3}{\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}\)
=\(\dfrac{1}{3}\sqrt{3}+\sqrt{3}+\dfrac{1}{2-\sqrt{3}}=\dfrac{4}{3}\sqrt{3}+\dfrac{1}{2-\sqrt{3}}\)
=\(\dfrac{4\sqrt{3}+2+\sqrt{3}}{3}=\dfrac{5\sqrt{3}+2}{3}\)
c)\(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)
=\(\left(1+\sqrt{2}\right)^2-3=1+2\sqrt{2}+2-3=2\sqrt{2}\)
d)\(3\sqrt{200}-2\sqrt{0,08}-4\sqrt{\dfrac{9}{8}}\)
=\(30\sqrt{2}-0,4\sqrt{2}-3\sqrt{2}=26.6\sqrt{2}\)
Bài 2:
a: \(=\sqrt{5}-2\)
b: \(=2\sqrt{3}+4\sqrt{3}-5\sqrt{3}-9\sqrt{3}=-8\sqrt{3}\)
c: \(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2\sqrt{2}}=\sqrt{16-8}=2\sqrt{2}\)
d: \(=\sqrt{2}+1-2+\sqrt{2}=2\sqrt{2}-1\)
e: \(=\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}-\dfrac{6+2\sqrt{5}}{4}\)
\(=\dfrac{16-3-\sqrt{5}}{2}=\dfrac{13-\sqrt{5}}{2}\)
f: \(=\sqrt{5\sqrt{3+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(=\sqrt{5\sqrt{3+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3+5\left(5-\sqrt{3}\right)}}\)
\(=\sqrt{5\sqrt{3+25-5\sqrt{3}}}\)
\(=\sqrt{5\sqrt{28-5\sqrt{3}}}\)
a. \(2\sqrt{16}+\sqrt{2}.\sqrt{0,02}-\dfrac{\sqrt{12,1}}{\sqrt{0,1}}=2.4+\sqrt{0,04}-\sqrt{\dfrac{12,1}{0,1}}=8+0,2-11=-2,8\)b. \(5\sqrt{20}-4\sqrt{45}+\dfrac{15}{\sqrt{5}}=10\sqrt{5}-12\sqrt{5}+3\sqrt{5}=\sqrt{5}\)
c. \(\left(\dfrac{\sqrt{6}-\sqrt{3}}{5\sqrt{2}-5}+\dfrac{\sqrt{5}}{5}\right):\dfrac{2}{\sqrt{5}-\sqrt{3}}=\left(\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{5\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}}{5}\right).\dfrac{\sqrt{5}-\sqrt{3}}{2}=\dfrac{\sqrt{3}+\sqrt{5}}{5}.\dfrac{\sqrt{5}-\sqrt{3}}{2}=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5.2}=\dfrac{5-3}{10}=\dfrac{2}{10}=\dfrac{1}{5}\)d. \(\dfrac{\sqrt{6}-3}{\sqrt{3}-\sqrt{2}}-\dfrac{4}{\sqrt{3}+1}+3\sqrt{3}=\dfrac{-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{4}{\sqrt{3}+1}+3\sqrt{3}=3\sqrt{3}-\sqrt{3}-\dfrac{4}{\sqrt{3}+1}=\dfrac{\left(\sqrt{3}+1\right).2\sqrt{3}-4}{\sqrt{3}+1}=\dfrac{6+2\sqrt{3}-4}{\sqrt{3}+1}=\dfrac{2+2\sqrt{3}}{\sqrt{3}+1}=\dfrac{ 2\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=2\)
a, \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}+\sqrt{5}\)
\(=\sqrt{5}+\dfrac{1}{2}.2\sqrt{5}+\sqrt{5}\)
\(=3\sqrt{5}\)
b, \(\sqrt{\dfrac{1}{2}}+\sqrt{4,5}+\sqrt{12,5}\)
\(=\sqrt{0,5}+3\sqrt{0,5}+5\sqrt{0,5}=9\sqrt{0,5}\)
c, \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
\(=2\sqrt{5}-3\sqrt{5}+3\sqrt{18}+2\sqrt{18}\)
\(=-\sqrt{5}+5\sqrt{18}\)
d, \(0,1.\sqrt{200}+2\sqrt{0,08}+0,4\sqrt{50}\)
\(=\sqrt{0,01.200}+0,2.\sqrt{2}+0,4.5\sqrt{2}\)
\(=\sqrt{2}+0,2\sqrt{2}+2\sqrt{2}=3,2\sqrt{2}\)
Chúc bạn học tốt!!!