Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(A=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{x+\sqrt{x^2-50}}\left(ĐKXĐ:A\ge0\right)\)
\(A^2=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)^2\left(\sqrt{x+\sqrt{x^2-50}}\right)^2\)
\(A^2=\left[x-\sqrt{50}-2\left(\sqrt{\left(x-\sqrt{50}\right).\left(x+\sqrt{50}\right)}\right)+x+\sqrt{50}\right]\left(x+\sqrt{x^2-50}\right)\)
\(A^2=\left[2x-2\left(\sqrt{x^2-50}\right)\right].\left(x+\sqrt{x^2-50}\right)\)
\(A^2=2x^2+2x\left(\sqrt{x^2-50}\right)-2x\left(\sqrt{x^2-50}\right)-2\left(\sqrt{x^2-50}\right)^2\)
\(A^2=2x^2-2\left(x^2-50\right)\)
\(A^2=100\)
\(\Rightarrow A=10\)
Trịnh Thành Công - Trang của Trịnh Thành Công - Học toán với OnlineMath đáp án là - 10 chứ không phải 10 đâu.
\(A=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{x+\sqrt{x^2}-50}\)
Suy ra
\(A^2=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)^2\left(x+\sqrt{x^2-50}\right)\)
\(=\left(2x-2\sqrt{x^2-50}\right)\left(x+\sqrt{x^2-50}\right)\)
\(=2\left(x-\sqrt{x^2-50}\right)\left(x+\sqrt{x^2-50}\right)\)
\(=2\left(x^2-\left(\sqrt{x^2-50}\right)^2\right)=2\left(x^2-\left(x^2-50\right)\right)=100\).
Với \(x\ge50\) thì \(x-\sqrt{50}< x+\sqrt{50}\) hay \(\sqrt{x-\sqrt{50}}< \sqrt{x+\sqrt{50}}\).
Suy ra \(A< 0\) mà \(A^2=100\) hay \(A=-10\).
Bài 1:
Ta có: \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\)
\(\Leftrightarrow\sqrt{16\left(x-2\right)}+\sqrt{25\left(x-2\right)}=18+\sqrt{9\left(x-2\right)}\)
\(\Leftrightarrow4\sqrt{x-2}+5\sqrt{x-2}=18+3\sqrt{x-2}\)
\(\Leftrightarrow6\sqrt{x-2}=18\)
\(\Leftrightarrow\sqrt{x-2}=3\)
\(\Leftrightarrow\left(\sqrt{x-2}\right)^2=3^2\)
\(\Leftrightarrow x-2=9\)
\(\Leftrightarrow x=11\)
Vậy tập nghiệm của PT \(S=\left\{11\right\}\)
a: Sửa đề: \(\sqrt{20}+3\sqrt{18}+\sqrt{80}+\sqrt{50}\)
\(=2\sqrt{5}+9\sqrt{2}+4\sqrt{5}+5\sqrt{2}\)
\(=14\sqrt{2}+6\sqrt{5}\)
b: \(A=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{x-1}=\dfrac{-2\sqrt{x}}{x-1}\)
B1:
\(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}\)
\(=\left|\sqrt{2}-\sqrt{3}\right|+3\sqrt{2}\)
\(=\sqrt{3}-\sqrt{2}+3\sqrt{2}\)
\(=\sqrt{3}+2\sqrt{2}\)
\(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=\sqrt{4-4\sqrt{3}+3}+\left|1+\sqrt{3}\right|\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+1+\sqrt{3}\)
\(=2-\sqrt{3}+1+\sqrt{3}\)
\(=3\)
B2:
đk: \(x\ge-2\)
Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\frac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow\sqrt{x+2}=3\)
\(\Leftrightarrow x+2=9\)
\(\Rightarrow x=7\)
Vậy x = 7
a) \(\sqrt{2}\cdot x-\sqrt{50}=0< =>\sqrt{2}\cdot x=\sqrt{50}\)
<=> x= 5
b) \(\sqrt{3}\cdot x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
<=> \(\sqrt{3}\cdot\left(x+1\right)=\sqrt{3}\cdot\sqrt{4}+\sqrt{3}\cdot\sqrt{9}\)
<=> \(\sqrt{3}\cdot\left(x+1\right)=\sqrt{3}\cdot5< =>x+1=5\)
<=> x=4
c) \(\sqrt{3}\cdot x^2-\sqrt{12}=0\\ < =>x^2=\sqrt{4}=2;-2\\ < =>x=\sqrt{2};-\sqrt{2}\)
d) \(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\\ < =>x^2=\sqrt{100}=10;-10\\ < =>x=\sqrt{10};-\sqrt{10}\)
@Lê Thị Thục Hiền
sai đề k