Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(mx^2-4mx+4m-nx^2+4nx-4n\)
\(=\left(mx^2-nx^2\right)-\left(4mx-4nx\right)+\left(4m-4n\right)\)
\(=x^2\left(m-n\right)-4x\left(m-n\right)+4\left(m-n\right)\)
\(=\left(m-n\right)\left(x^2-4x+4\right)\)
\(=\left(m-n\right)\left(x-2\right)^2\)
b) \(3x^2+48+24x-12y^2\)
\(=3\left(x^2+8x+16-4y^2\right)\)
\(=3\left[\left(x+4\right)^2-\left(2y\right)^2\right]\)
\(=3\left(x+4-2y\right)\left(x+4+2y\right)\)
a) \(mx^2-4mx+4m-nx^2+4nx-4n\)
\(=\left(mx^2-nx^2\right)-\left(4mx+4nx\right)+\left(4m-4n\right)\)
\(=x^2\left(m-n\right)-4x\left(m-n\right)+4\left(m-n\right)\)
\(=\left(m-n\right).\left(x^2-4x+4\right)\)
\(=\left(m-n\right).\left(x-2\right)^2\)
b) \(3x^2+48+24x-12y^2\)
\(=3\left(x^2+16+8x-4y^2\right)\)
\(=3\left[\left(x^2+8x+16\right)-\left(2y\right)^2\right]\)
\(=3\left[\left(x+4\right)^2-\left(2y\right)^2\right]\)
\(=3\left(x+4-2y\right).\left(x+4+2y\right)\)
Phân tích đa thức thành nhân tử
3x2 + 48 + 24x - 12y2 (Chung - Nhóm 3 hạng tử)
GIÚP MÌNH VỚI NHA !!!
Ta có :
\(3x^2+48+24x-12y^2\)
\(=3x^2+24x+48-12y^2\)
\(=3\left(x^2+8x+16-4y^2\right)\)
\(=3\left[\left(x+4\right)^2-\left(2y\right)^2\right]\)
\(=3\left(x-2y+4\right)\left(x+2y+4\right)\)
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)
\(3x^2+6x-33-\frac{24}{x}+\frac{48}{x^2}=0\)
\(\Leftrightarrow3\left(x^2+\frac{16}{x^2}\right)+6\left(x-\frac{4}{x}\right)-33=0\)
Đặt \(x-\frac{4}{x}=a\Rightarrow a^2=x^2+\frac{16}{x^2}-8\Rightarrow x^2+\frac{16}{x^2}=a^2+8\)
\(3\left(a^2+8\right)+6a-33=0\)
\(\Leftrightarrow3a^2+6a-9=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{4}{x}=1\\x-\frac{4}{x}=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-4=0\\x^2+3x-4=0\end{matrix}\right.\) \(\Leftrightarrow...\)
Bài 1:
a) (3x-2).(4x+5)-6x.(2x-1) = 12x^2 +15x - 8x -10 - 12x^2 + 6x = 13x - 10
b) (2x-5)^2 - 4.(x+3).(x-3) = 4x^2 - 20x + 25 - 4x^2 + 12x -12x + 36 = -20x + 61
Bài 2:
a)(2x-1)^2-(x+3)^2 = 0
<=> (2x-1-x-3).(2x-1+x+3) =0
<=>(x-4).(3x+2) = 0
<=> x-4 = 0 hoặc 3x+2=0
*x-4=0 => x=4
*3x+2 = 0 => 3x=-2 => x=-2/3
b)x^2(x-3)+12-4x=0 <=> x^2(x-3) - 4(x-3) =0 <=> (x-3).(x-2)(x+2) <=> x-3=0 hoặc x-2=0 hoặc x+2 =0
*x-3=0 => x=3
*x-2=0 =>x=2
*x+2=0 =>x=-2
c) 6x^3 -24x =0 <=> 6x(x^2 -4)=0 <=> 6x(x-2)(x+2)=0 <=> x=0 hoặc x-2 =0 hoặc x+2=0 <=> x=0 hoặc x=2 hoặc x=-2
\(\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left[\left(x^2+3x+1\right)-\left(3x-1\right)\right]^2=\left(x^2+3x+1-3x+1\right)^2\)
\(=\left(x^2+2\right)^2\)
A=\(\left(x^2+3x+1\right)\left(\left(3x-1\right)^2+2\left(1-3x\right)\right)\)
A=\(\left(x^2+3x+1\right)\left(9x^2-6x+1+2-6x\right)\)
A=\(\left(x^2+3x+1\right)\left(9x^2+3\right)\)
Bài 1 :
a) \(3x^2+4x-7\)
\(=3x^2-3x+7x-7\)
\(=3x\left(x-1\right)+7\left(x-1\right)\)
\(\left(x-1\right)\left(3x+7\right)\)
b) \(3x^2+48+24x-12y^2\)
\(=3\left(x^2+16+8x-4y^2\right)\)
\(=3\left[\left(x+4\right)^2-\left(2y\right)^2\right]\)
\(=3\left(x-2y+4\right)\left(x+2y+4\right)\)
Bài 2 :
a) Phân thức xác định \(\Leftrightarrow\hept{\begin{cases}x-3y\ne0\\2xy-1\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne3y\\2xy\ne1\\x\ne-2\end{cases}}}\)
b) \(A=\left(\frac{x+2y}{x-3y}+\frac{5y}{3y-x}-2xy\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x+2y}{x-3y}-\frac{5y}{x-3y}-\frac{2xy\left(x-3y\right)}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x+2y-5y-2x^2y+6xy^2}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x-3y-2x^2y+6xy^2}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\frac{\left(x-3y\right)-2xy\left(x-3y\right)}{x-3y}\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\frac{-\left(x-3y\right)\left(2xy-1\right)\left(x+2\right)}{\left(x-3y\right)\left(2xy-1\right)}+\frac{x^2-3}{x+2}\)
\(A=\frac{-\left(x+2\right)\left(x+2\right)}{\left(x+2\right)}+\frac{x^2-3}{x+2}\)
\(A=\frac{-x^2-4x-4+x^2-3}{x+2}\)
\(A=\frac{-4x-7}{x+2}\)
c) Thay x = 3 ( vì y bị triệt tiêu hết nên ko xét đến đỡ mệt ng :) )
\(A=\frac{-4\cdot3-7}{3+2}=\frac{-19}{5}\)
\(=3\left(x^2+4x+16-4y^2\right)\)