\(\left(\frac{x}{x^2-16}-\frac{x-4}{x^2+4x}\right):\frac{2x-4}{x^2+4x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

\(\left[\frac{x}{\left(x+4\right)\left(x-4\right)}-\frac{x-4}{x\left(x+4\right)}\right]:\frac{2\left(x-2\right)}{x\left(x+4\right)}\)\(=\left[\frac{x^2-\left(x-4\right)^2}{x\left(x+4\right)\left(x-4\right)}\right].\left[\frac{x\left(x+4\right)}{2\left(x-2\right)}\right]\)\(=\left(\frac{x^2-x^2+8x-16}{x\left(x+4\right)\left(X-4\right)}\right).\frac{x\left(x+4\right)}{2\left(x-2\right)}=\frac{8\left(x-2\right).x\left(x+4\right)}{x\left(x+4\right)\left(x-4\right).2\left(x-2\right)}=\frac{4}{x-4}\)

6 tháng 7 2016

Đây mà là toán lp 7 à???

6 tháng 7 2016

mk ko biết cứ bấm đại thui, bn có thể giúp mk ko ???

30 tháng 7 2016

\(=\left(\frac{x^3+8}{4x}\right):\left(\frac{x^2-2x+4}{4x}\right)=\frac{\left(x+2\right)\left(x^2-2x+4\right)}{4x}.\frac{4x}{\left(x^2-2x+\right)}=x+2\)

26 tháng 12 2016

=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right)\)\(\left(\frac{y\left(x+y\right)+x^2}{x+y}\right)\)

=\(\left(\frac{x^2+xy+y^2-3y^2-y\left(x-y\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right)\) \(\left(\frac{x^2+xy+y^2}{x+y}\right)\)

=\(\left(\frac{x^2+xy-2y^2-xy+y^2}{x\left(x-y\right)}\right)\left(\frac{1}{x+y}\right)\)

=\(\frac{x^2-y^2}{x\left(x-y\right)\left(x+y\right)}\)=\(\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}\) =\(\frac{1}{x}\)

\(=\dfrac{3x+6x^2+2x-4x^2}{\left(1-2x\right)\left(1+2x\right)}\cdot\dfrac{\left(1-2x\right)^2}{x\left(2x+5\right)}\)

\(=\dfrac{1-2x}{1+2x}\)

16 tháng 7 2016

\(C=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x^2-3x}-\frac{x}{x^2-9}\right)\)

=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\left[\frac{x+3}{x\left(x-3\right)}-\frac{x}{\left(x-3\right)\left(x+3\right)}\right]\)

=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}\left[\frac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}-\frac{x^2}{x\left(x-3\right)\left(x+3\right)}\right]\)

=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\frac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}\)

=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\frac{\left(x+3-x\right)\left(x+3+x\right)}{x\left(x-3\right)\left(x+3\right)}\)

=>\(C=\frac{x}{x-3}-\frac{x\left(x+3\right)}{2x+3}.\frac{3\left(2x+3\right)}{x\left(x-3\right)\left(x+3\right)}\)

=>\(C=\frac{x}{x-3}-\frac{3}{x-3}\)

=>\(C=\frac{x-3}{x-3}\)

=>C=1

21 tháng 5 2016
  1. Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)

Áp dụng  : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)

\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)

...................................

\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)

Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)

Từ đó suy ra đpcm

Cái ............... là gì vậy bn