Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)\(\frac{2.3+4.6+14.21}{3.5+6.10+21.35}=\frac{2.3+2.2.6+2.7.21}{3.5+3.2.10+3.7.35}=\frac{2.3+2.12+2.147}{3.5+3.20+3.245}=\frac{2\left(3+12+147\right)}{3\left(5+20+245\right)}\)
\(=\frac{2.162}{3.270}=\frac{54}{135}=\frac{2}{5}\)
\(a.\frac{-2019.2018+1}{\left(-2017\right).\left(-2019\right)+2018}\)
\(=\frac{2019.\left(-2018\right)+1}{2019.2017+2018}\)
\(=\frac{2019.\left(-2018\right)+1}{2019.2018-1}\)
\(=-\frac{2018}{2018}\)
\(=-1\)
\(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+\frac{4}{7\cdot9\cdot11}+\frac{4}{9\cdot11\cdot13}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(=\frac{1}{1.3}-\frac{1}{11.13}\)
\(=\frac{1}{3}-\frac{1}{143}\)
\(=\frac{140}{429}\)
\(\dfrac{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20+7\cdot21\cdot35}{1\cdot5\cdot7+2\cdot10\cdot14+4\cdot20\cdot28+7\cdot35\cdot45}\)
=\(\dfrac{3+6+12+21\cdot35}{14+28+7\cdot45}\)
=\(\dfrac{450}{119}\)
Vì \(\dfrac{450}{119}>1\) mà \(1>\dfrac{303}{708}\)
\(\Rightarrow\)\(\dfrac{450}{119}>\dfrac{303}{708}\)
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+\frac{1}{14.9}+...+\frac{1}{198.101}\)
\(=\frac{2}{2.6}+\frac{2}{6.10}+\frac{2}{10.14}+\frac{2}{14.18}+...+\frac{2}{198.202}\)
\(=\frac{1}{2}.\left(\frac{4}{2.6}+\frac{4}{6.10}+\frac{4}{10.14}+\frac{4}{14.18}+...+\frac{4}{198.202}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+...+\frac{1}{198}-\frac{1}{202}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{202}\right)\)
\(=\frac{1}{2}.\frac{50}{101}=\frac{25}{101}\)
a, A= \(5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)
\(A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=5\left(1-\dfrac{1}{100}\right)\)
\(A=5.\dfrac{99}{100}=\dfrac{99}{20}.\)
b, \(C=1.2.3+2.3.4+...+8.9.10\)
\(4C=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)\(4C=8.9.10.11\)
\(C=\dfrac{8.9.10.11}{4}=1980.\)
c, https://hoc24.vn/hoi-dap/question/384591.html
Câu này bạn vào đây mình đã giải câu tương tự nhé.
\(1)A=\dfrac{5}{1.2}+\dfrac{5}{2.3}+...+\dfrac{5}{99.100}\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=5\cdot\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{99}{20}\)
a) \(\frac{4.7}{9.32}\)=\(\frac{28}{288}\)=\(\frac{7}{72}\)
b)\(\frac{3.21}{14.15}\)=\(\frac{63}{210}\)=\(\frac{3}{10}\)
c)\(\frac{2.5.13}{26.35}\)=\(\frac{130}{910}\)=\(\frac{1}{7}\)
d)\(\frac{9.6-9.3}{18}\)=\(\frac{27}{18}\)=\(\frac{3}{2}\)
e)\(\frac{17.5-17}{3-20}\)=\(\frac{68}{-17}\)=\(-4\)
f)\(\frac{49+7.49}{49}\)=\(\frac{392}{49}\)=\(8\)
\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}=\frac{-2}{6}=\frac{-1}{3}\)
Bài làm của mk hơi tắt nên bạn tự suy luận nhé
\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)=\(\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)=\(\frac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1+5\right)}\)=\(\frac{-13122}{6561.6}\)=\(-\frac{1}{3}\)