Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-4y+5\right)\)
\(49\left(y-4\right)^2-9y^2-36y-36\)
\(=49\left(y-4\right)^2-\left(9y^2+36y+36\right)\)
\(=49\left(y-4\right)^2-\left(3y+6\right)^2\)
\(=[7\left(y-4\right)]^2-\left(3y+6\right)^2\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28+3y+6\right)\left(7y-28-3y-6\right)\)
\(=\left(10y-22\right)\left(4y-34\right)\)
\(1)\)
\(a)\)\(A=5-8x-x^2\)
\(A=-\left(x^2+8x+16\right)+21\)
\(A=-\left(x+4\right)^2+21\le21\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)
\(\Leftrightarrow\)\(x=-4\)
Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)
\(b)\)\(B=5-x^2+2x-4y^2-4y\)
\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)
\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)
\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)
Chúc bạn học tốt ~
\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(............\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\)
\(A=\frac{2^{128}-1}{3}\)
Chúc bạn học tốt ~
b) (1 + 2x)(1- 2x) - x(x+2)(x-2)
= (1- 4x2) - x(x2 - 4)
= 1 - 4x2- x3- 4x
= (1 - x3) + (4x - 4x2)
= (1- x) (1 + x + x2) + 4x(1 -x)
= (1-x)(1+5x + x2)
1. x+y=xy
=> x-xy+y=0
=> x(1-y)+y=0
=> x(1-y)+y -1 =-1
=> x(1-y)- (1-y) =-1=> (1-y)(x-1)=-1
* 1-y=-1 => y=2
x-1=1=> x=2
* 1-y =1 => y=0
x-1=-1 => x=0
a) 36 - 4a2 + 20ab - 25b2 = 36 - ( 4a2 - 20ab + 25b2 ) = 62 - ( 2a - 5b )2 = ( 6 - 2a + 5b )( 6 + 2a - 5b )
b) ( xy + 4 )2 - 4( x + y )2 = ( xy + 4 )2 - 22( x + y )2 = ( xy + 4 )2 - [ 2( x + y ) ]2
= ( xy + 4 )2 - ( 2x + 2y )2 = ( xy + 4 - 2x - 2y )( xy + 4 + 2x + 2y )
= [ x( y - 2 ) - 2( y - 2 ) ][ x( y + 2 ) + 2( y + 2 ) ]
= ( y - 2 )( x - 2 )( y + 2 )( x + 2 )
c) x2 + y2 - x2y2 + xy - x - y
= ( x2 - x2y2 ) + ( y2 - y ) + ( xy - x )
= x2( 1 - y2 ) + y( y - 1 ) + x( y - 1 )
= x2( 1 - y )( 1 + y ) - y( 1 - y ) - x( 1 - y )
= ( 1 - y )[ x2( 1 + y ) - y - x ) ]
= ( 1 - y )( x2 + x2y - y - x )
= ( 1 - y )[ ( x2 - x ) + ( x2y - y ) ]
= ( 1 - y )[ x( x - 1 ) + y( x2 - 1 ) ]
= ( 1 - y )[ x( x - 1 ) + y( x - 1 )( x + 1 ) ]
= ( 1 - y )( x - 1 )[ x + y( x + 1 ) ]
= ( 1 - y )( x - 1 )( x + xy + y )
d) 3x + 3y - x2 - 2xy - y2
= 3( x + y ) - ( x2 + 2xy + y2 )
= 3( x + y ) - ( x + y )2
= ( x + y )( 3 - x - y )
e) ( 2xy + 1 )2 - ( 2x + y )2
= ( 2xy + 1 - 2x - y )( 2xy + 1 + 2x + y )
= [ ( 2xy - 2x ) - ( y - 1 ) ][ ( 2xy + 2x ) + ( y + 1 ) ]
= [ 2x( y - 1 ) - ( y - 1 ) ][ 2x( y + 1 ) + ( y + 1 ) ]
= ( y - 1 )( 2x - 1 )( y + 1 )( 2x + 1 )
a) \(36-4a^2+20ab-25b^2\)
\(=36-\left(4a^2-20ab+25b^2\right)\)
\(=36-\left(2a-5b\right)^2\)
\(=\left(6-2a+5b\right)\left(6+2a-5b\right)\)
b) \(\left(xy+4\right)^2-4\left(x+y\right)^2\)
\(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)
\(=\left[x\left(y-2\right)-2\left(y-2\right)\right]\left[x\left(y+2\right)+2\left(y+2\right)\right]\)
\(=\left(x+2\right)\left(x-2\right)\left(y+2\right)\left(y-2\right)\)
c) \(x^2+y^2-x^2y^2+xy-x-y\)
\(=-\left(x^2y^2-x^2\right)+\left(y^2-y\right)+\left(xy-x\right)\)
\(=-x^2\left(y-1\right)\left(y+1\right)+y\left(y-1\right)+x\left(y-1\right)\)
\(=\left(y-1\right)\left(-x^2y-x^2+y+x\right)\)
\(=\left(1-y\right)\left[\left(x^2y-y\right)+\left(x^2-x\right)\right]\)
\(=\left(1-y\right)\left(x-1\right)\left(xy+y+x\right)\)
P = ( xy + 1 ) ( x2y2 - xyt + 1 )
= x3y3 + 1
= \(\left(5.\frac{3}{5}\right)^3+1\)
= \(27+1\)
= 28
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.