Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hên xui thôi ( cái này không có chắc lắm )
\(\frac{x^3-xy^3+y^3z-yz^3+z^3x-x^3z}{x^2y-xy^2+y^2z-yz^2+z^2x-zx^2}\)
\(=xy-xy+xy-yz+zx-x^3\)\(z\)\(-\)\(zx^2\)
\(=xy-yz-zx-x^3\)\(z\)
phần trên sai rồi cho xin lỗi ( trình bày lại )
bạn ghi lại đề nha
= xy - xy + yz - yz + zx - x^3z - zx^2
= -zx - x^3z
\(\frac{x^4-y^4}{y^3-x^3}=\frac{\left(x^2\right)^2-\left(y^2\right)^2}{\left(y-x\right)\left(y^2+xy+x^2\right)}=-\frac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=-\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=-\frac{\left(x+y\right)\left(x^2+y^2\right)}{x^2+xy+y^2}\)
a/\(\frac{10x}{5x^2}=\frac{2}{x}\)
b/\(\frac{x\left(x^2-y^2\right)}{x^2\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}=\frac{x-y}{x}\)
ĐKXĐ : \(x^2-5x\ne0\Leftrightarrow x\left(x-5\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)
a) \(A=\frac{x^2-10x+25}{x^2-5x}\)
\(A=\frac{\left(x-5\right)^2}{x\left(x-5\right)}\)
\(A=\frac{x-5}{x}\)
b) Để phân thức bằng 0 thì \(x-5=0\Leftrightarrow x=5\)
Mà ĐKXĐ \(x\ne5\)=> ko có giá trị của x để phân thức bằng 0
c) Để phân thức bằng 0 thì :
\(\frac{x-5}{x}=\frac{5}{2}\)
\(2x-10=5x\)
\(-10=3x\)
\(x=\frac{-3}{10}\)
a,\(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x\left(x-5\right)}=\frac{x-5}{x}\)
b,Để phân thức có giá trị bằng 0 thì \(\frac{x-5}{x}=0\)
Mà: Theo điều kiện ta có: \(x\ne0\)
nên để: \(\frac{x-5}{x}=0\)thì: \(x-5=0\Leftrightarrow x=5\)
c,Để phân thức có giá trị bằng 5/2 thì:
\(\frac{x-5}{x}=\frac{5}{2}\)
\(\Leftrightarrow2\left(x-5\right)=5x\)
\(\Leftrightarrow2x-10=5x\)
\(\Leftrightarrow2x-5x=10\)
\(\Leftrightarrow-3x=10\Rightarrow x=-\frac{10}{3}\)
=.= hk tốt!!
\(DK\hept{\begin{cases}x^3+2x^2y-xy^2-2y^3\ne0\\x-y\ne0\end{cases}}\)
\(\Leftrightarrow\left(x^2+3xy+2y^2\right)\left(x-y\right)=x^3+2x^2y-xy^2-2y^3\)
\(\Leftrightarrow x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3=x^3+2x^2y-xy^2-2y^3\)
\(\Leftrightarrow x^2y=0\)\(\Rightarrow ko.dung.\)
\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)
\(=\frac{\left(y-x\right)\left(y+x\right)}{\left(x-y\right)^3}\)
\(=-\frac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^3}\)
\(=-\frac{x+y}{\left(x-y\right)^2}\)