K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Lời giải:

a) Ta có f'(x) = 3x2 + 1, g(x) = 6x + 1. Do đó

f'(x) > g'(x) <=> 3x2 + 1 > 6x + 1 <=> 3x2 - 6x >0

<=> 3x(x - 2) > 0 <=> x > 2 hoặc x > 0 <=> x ∈ (-∞;0) ∪ (2;+∞).

b) Ta có f'(x) = 6x2 - 2x, g'(x) = 3x2 + x. Do đó

f'(x) > g'(x) <=> 6x2 - 2x > 3x2 + x <=> 3x2 - 3x > 0

<=> 3x(x - 1) > 0 <=> x > 1 hoặc x < 0 <=> x ∈ (-∞;0) ∪ (1;+∞).



NV
14 tháng 5 2021

Mấy câu này bạn cần giải theo kiểu trắc nghiệm hay tự luận nhỉ?

14 tháng 5 2021

Em cần kiểu tự luận ạ

14 tháng 2 2021

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x^2-1}+\sqrt[3]{\left(x-1\right)^3}}{\sqrt{x-1}}=\lim\limits_{x\rightarrow1^+}\dfrac{\left(x^2-1\right)^{\dfrac{1}{2}}+x-1}{\left(x-1\right)^{\dfrac{1}{2}}}=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{1}{2}\left(x^2-1\right)^{-\dfrac{1}{2}}.2+1}{\dfrac{1}{2}\left(x-1\right)^{-\dfrac{1}{2}}}\)

\(=\dfrac{1}{0}=+\infty\)

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\dfrac{\sqrt[3]{x}-1}{\sqrt{2}-\sqrt{x+1}}=\lim\limits_{x\rightarrow1^-}\dfrac{\left(x-1\right)\left(\sqrt{2}+\sqrt{x+1}\right)}{[\left(\sqrt[3]{x}\right)^2+\sqrt[3]{x}+1]\left(1-x\right)}=\lim\limits_{x\rightarrow1^-}\dfrac{-\left(\sqrt{2}+\sqrt{1+1}\right)}{1+1+1}=-\dfrac{2\sqrt{2}}{3}\)

\(f\left(1\right)=\sqrt{2}\)

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)\ne\lim\limits_{x\rightarrow1^+}f\left(x\right)\ne f\left(x\right)\)=> ham gian doan tai x=1

15 tháng 2 2021

Sai rồi hay sao ý bạn ơi

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

1.

\(\lim\limits_{x\to (-1)-}\frac{\sqrt{x^2-3x-4}}{1-x^2}=\lim\limits_{x\to (-1)-}\frac{\sqrt{(x+1)(x-4)}}{(1-x)(1+x)}\)

\(=\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{(x-1)\sqrt{-(x+1)}}=-\infty\) do:

\(\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{x-1}=\frac{-\sqrt{5}}{2}<0\) và \(\lim\limits_{x\to (-1)-}\frac{1}{\sqrt{-(x+1)}}=+\infty\)

 

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

2.

\(\lim\limits_{x\to 2+}\left(\frac{1}{x-2}-\frac{x+1}{\sqrt{x+2}-2}\right)=\lim\limits_{x\to 2+}\frac{1-(x+1)(\sqrt{x+2}+2)}{x-2}=-\infty\) do:

\(\lim\limits_{x\to 2+}\frac{1}{x-2}=+\infty\) và \(\lim\limits_{x\to 2+}[1-(x+1)(\sqrt{x+2}+2)]=-11<0\)