K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

ĐK: a > 0, a khác 1

\(M=\dfrac{a-1}{\sqrt{a}-1}=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\sqrt{a}+1\)

\(N=\dfrac{a-1}{\sqrt{a}+1}=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}+1}=\sqrt{a}-1\)

\(P=\dfrac{a\sqrt{a}-1}{\sqrt{a}-1}=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}-1}=a+\sqrt{a}+1\)

\(Q=\dfrac{a\sqrt{a}+1}{\sqrt{a}+1}=\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}+1}=a-\sqrt{a}+1\)

\(A=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}}-\dfrac{5\sqrt{x}+3}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}.\sqrt{x}+3\left(\sqrt{x}+1\right)-\left(5\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+3\sqrt{x}+3-5\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

1 tháng 6 2018

\(A=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}}-\dfrac{5\sqrt{x}+3}{x+\sqrt{x}}\\ ĐKXĐ:x>0;x\ne1\\ \Rightarrow A=\dfrac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{3\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\dfrac{5\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}\\ =\dfrac{x+3\sqrt{x}+3-5\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+1\right)}\\ =\dfrac{x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

Vậy \(A=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) với \(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

23 tháng 8 2017

\(A=\left[1:\left(1-\frac{\sqrt{a}}{1+\sqrt{a}}\right)\right]\left[\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}-a+\sqrt{a}-1}\right]\)

\(=\left[1:\left(\frac{1+\sqrt{a}-\sqrt{a}}{1+\sqrt{a}}\right)\right]\left[\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right]\)

\(=\left(1:\frac{1}{1+\sqrt{a}}\right).\frac{a+1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\)

\(=\left(\sqrt{a}+1\right).\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(a+1\right)}\)

\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{a+1}=\frac{a-1}{a+1}\)

24 tháng 6 2017

\(A=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)

\(=\left(\dfrac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+4\sqrt{a}\right)\cdot\dfrac{a-1}{\sqrt{a}}\)

\(=\left(\dfrac{2\cdot2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+4\sqrt{a}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\left(\dfrac{4\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+4\sqrt{a}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\dfrac{4\sqrt{a}+4\sqrt{a}\cdot\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=4\sqrt{a}\cdot\left(1+\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\right)\cdot\dfrac{1}{\sqrt{a}}\)

\(=4\left(1+a-1\right)\)

\(=4a\)

Để \(\sqrt{a}>A\) thì \(\sqrt{a}>4a\)

\(\Leftrightarrow a>\sqrt{4a}\left(đk:a\ge0\right)\)

\(\Leftrightarrow a>2\sqrt{a}\)

\(\Leftrightarrow2\sqrt{a}< a\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{a}< a\left(đk:a\ge0\right)\\2\sqrt{a}< a\left(đk:a< 0\right)\end{matrix}\right.\)

4 tháng 10 2017

\(a)A=\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\\ =\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}}+\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\\ =\sqrt{5}+3+\sqrt{3}-\left(\sqrt{5}+3\right)\\ =\sqrt{3}\)

\(b)B=\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\\ =\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10-2\sqrt{21}}\\ =\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\\ =\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)^2\\ =\left(5+\sqrt{21}\right)\left(10-2\sqrt{21}\right)\\ =2\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)\\ =2\left(25-21\right)=8\)

a: \(P=\dfrac{a+5\sqrt{a}+6-a+3\sqrt{a}-2-4\sqrt{a}+4}{a-4}\)

\(=\dfrac{4\sqrt{a}+8}{a-4}=\dfrac{4}{\sqrt{a}-2}\)

b: Khi a=1/9 thì \(P=\dfrac{4}{\dfrac{1}{3}-2}=4:\dfrac{-5}{3}=-\dfrac{12}{5}\)

c: Để P=2 thì \(2\sqrt{a}-4=4\)

=>2căn a=8

=>căn a=4

hay a=16