Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\)
\(=>B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}=\frac{1\cdot2\cdot3}{2\cdot3\cdot4}=\frac{1}{4}\)
Ta có công thức : với n thuộc N* thì ta luôn có :
\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Áp dụng vào bài toán ta được :
\(P=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{49.51}\right)+\frac{2}{51}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.......\frac{50^2}{49.51}+\frac{2}{51}\)
\(=\frac{\left(2.3.4...50\right)\left(2.3.4...50\right)}{\left(1.2.3...49\right)\left(3.4.5....51\right)}+\frac{2}{51}\)
\(=\frac{50.2}{51}+\frac{2}{51}=\frac{102}{51}=2\)
1, =\(\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}=\frac{1}{2}\)
2, A=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
= \(\frac{1\cdot2\cdot3\cdot....\cdot99}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\)
Vậy ......
hok tốt
\(B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}......\frac{21}{20}\)
\(B=\frac{21}{2}\)
@@@
\(B=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{20}\right)\)
\(\Rightarrow B=\left(\frac{2}{2}+\frac{1}{2}\right)\left(\frac{3}{3}+\frac{1}{3}\right)\left(\frac{4}{4}+\frac{1}{4}\right)...\left(\frac{20}{20}+\frac{1}{20}\right)\)
\(\Rightarrow B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{21}{20}\)
\(\Rightarrow B=\frac{21}{2}\)
\(\Rightarrow2A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2014}\)
\(\Rightarrow2A-A=A=1-\left(\frac{1}{2}\right)^{2015}\)
Với B tương tự nhưng là lấy 3B
2.\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{49}{50}=\frac{1}{50}\)
Ta có:\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}=\frac{1}{20}\)
k 4 hôm cho người trả lời đúng
k 4 hôm luôn