Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2+2x\left(y+1\right)+y^2+2y+1=\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1=\left(x+y+1\right)^2\)
b, \(u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+2\)
\(=u^2+v^2+2u+2v+2uv+2u+2v+2+2\)
\(=\left(u^2+2uv+v^2\right)+\left(4u+4v\right)+4\)
\(=\left(u+v\right)^2+4\left(u+v\right)+2^2=\left(u+v+2\right)^2\)
1.
a) \(A=x^2+2x\left(y+1\right)+y^2+2y+1\)
\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(A=\left(x+y+1\right)^2\)
b) \(B=u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+2\)\(B=u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+1+1\)\(B=\left(u^2+2u+1\right)+2\left(u+1\right)\left(v+1\right)+\left(v^2+2v+1\right)\)\(B=\left(u+1\right)^2+2\left(u+1\right)\left(v+1\right)+\left(v+1\right)^2\)\(B=\left(u+1+v+1\right)^2=\left(u+v+2\right)^2\)
tik mik nha !!!
a.) \(A=x^2+y^2+1+2xy+2x+2y=\left(x+y+1\right)^2.\)
b.) \(B=u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+2=u^2+2u+1+2\left(u+1\right)\left(v+1\right)+v^2+2v+1\)
\(B=\left(u+1\right)^2+2\left(u+1\right)\left(v+1\right)+\left(v+1\right)^2=\left(u+1+v+1\right)^2=\left(u+v+2\right)^2\)
Giả sử số tự nhiên a chia cho 7 dư 3. CMR a chia cho 7 dư 2
1.
a. \(x^2-4x\Rightarrow x^2-4x+4=\left(x-2\right)^2\)
b. \(x^2+9\Rightarrow x^2+9+6x=\left(x+3\right)^2\)
c. \(x^2+xy+y^2\Rightarrow x^2+xy+y^2+xy=\left(x+y\right)^2\)
d. \(x^2-x\Rightarrow x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
a) Đặt A = u2 + v2 - 2u + 3v + 15
= (u2 - 2u + 1) + (v2 + 3v + 9/4) + 47/4
= (u - 1)2 + (v + 3/2)2 + 47/4 \(\ge\frac{47}{4}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}u-1=0\\v+\frac{3}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}u=1\\v=-\frac{3}{2}\end{cases}}\)
Vậy Min A = 47/4 <=> u = 1 ; y = -3/2
a,(5x3-4x2+7x):x
=\(5x^2-4x+7\)
b, (x5+12x3-9x2):4x2
=\(\dfrac{1}{4}x^3+3x-\dfrac{9}{4}\)
c,d tương tự
các bài khác bn tự lm nhé mk bận rồi xl nhìu nha
a) 5x2 ( 3x2 -7x+2)-15x(x-3)
=15x4-35x3+10x2-15x2+45x
=15x4-35x3-5x2+45x
c) (x+3)(x-3)(x-2)(x+1)
=(x2-9)(x2+x-2x-2)
=(x2-9)(x2-x-2)
=x4-x3-2x2-9x2+9x+18
=x4-x3-11x2+9x+18
d)(2x+1)2+(4x-1)2+2(2x+1)(4x+1)
=2x2+4x+1-16x2-8x+1
=2x2+4x+1-16x2-8x+1+16x2-4x+8x-2
=2x2+7
e) (2x2-3x)(5x2-2x+1)-10x2(x+3)
=10x4 -4x3+2x2-15x3+6x2-3 -10x2-30x
=10x4-19x3-2x2-30x-3
a) 4x^2(5x^3 - 2x + 3)
= 20x^5 - 8x^3 + 12x^2
b) 2u(1 + u - v) - v(1 - 2u + v)
= 2u + 2u^2 - v - v^2